연속 함수
둘러보기로 가기
검색하러 가기
엡실론-델타 논법 문서를 참고하십시오.
관련 문서 둘러보기 |
미적분학 |
---|
위상수학과 해석학에서, 연속 함수(連續函數, 문화어: 련속함수, 영어: continuous function)는 정의역의 점의 "작은 변화"에 대하여, 치역의 값 역시 작게 변화하는 함수이다.
정의[편집]
위상 공간 및 사이의 함수 및 점 가 다음 조건을 만족시킨다면, 가 점 에서 연속이다(continuous at the point x)라고 한다.
위상 공간 및 사이의 함수 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 함수를 연속 함수라고 한다.
- 임의의 열린 집합 에 대하여, 원상 는 열린 집합이다.
- 임의의 닫힌 집합 에 대하여, 원상 는 닫힌 집합이다.
- 는 의 모든 점에서 연속이다.
- 임의의 부분 집합 에 대하여, 항상 이다. 여기서 은 폐포를 일컫는다.
위상 공간 및 사이의 함수 가 다음 조건을 만족시킨다면, 를 점렬 연속 함수(點列連續函數, 영어: sequentially continuous function)라고 한다.
- 임의의 점렬 및 점 에 대하여, 만약 라면 이다.
좌·우 연속성[편집]
어떤 구간 및 위상 공간 사이의 함수 및 실수 에 대하여, 다음을 정의하자.
- 만약 라면, 는 에서 우연속 함수(영어: right-continuous function)이다.
- 만약 라면, 는 에서 좌연속 함수(영어: left-continuous function)이다.
성질[편집]
연속함수는 위상 공간의 몇가지 성질을 보존하기 때문에 매우 유용하다.
- f : X → Y 와 g : Y → Z 가 연속 함수이면 합성 함수 g o f : X → Z 도 연속 함수이다.
- f : X → Y 가 연속 함수이면
임의의 두 위상 공간 , 사이의 연속 함수는 항상 점렬 연속 함수이다. 만약 가 제1 가산 공간이라면, 와 사이의 함수에 대하여 연속 함수와 점렬 연속 함수가 서로 동치이다.
거리 공간에서의 연속 함수[편집]

두 거리 공간 및 사이의 함수 및 점 에 대하여, 다음 두 조건이 서로 동치이다.
- 는 에서 연속 함수이다.
- 임의의 양의 실수 에 대하여, 다음 조건을 만족시키는 양의 실수 이 존재한다.
- 임의의 에 대하여, 만약 라면, 이다.
- 는 에서 점렬 연속 함수이다. 즉, 임의의 점렬 에 대하여, 만약 라면 이다.
실수값 연속 함수[편집]
임의의 위상 공간 위의 두 연속 함수
에 대하여, 다음이 성립한다.
- 는 연속 함수이다.
- 는 연속 함수이다.
- 상수 함수는 연속 함수이므로, 만약 가 임의의 실수 라면, 는 연속 함수이다.
- 만약 모든 에 대하여 이라면, 는 연속 함수이다.
실수 위의 함수[편집]
실수 구간 으로부터 위상 공간 로 가는 함수 및 임의의 실수 에 대하여, 다음이 성립한다.
- 는 에서 좌연속 함수이며 우연속 함수이다.
- 는 에서 연속 함수이다.
예[편집]
실수선에 표준적인 위상을 정의하였을 때, 다음 함수들은 연속 함수이다.
다음 함수는 연속 함수가 아니다.
- 부호 함수
참고 문헌[편집]
- Munkres, James R. (2000). 《Topology》 (영어) 2판. Prentice Hall. ISBN 978-0-13-181629-9. MR 0464128. Zbl 0951.54001.
같이 보기[편집]
외부 링크[편집]
- “Continuous function”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- “Continuous mapping”. 《Encyclopedia of Mathematics》 (영어). Springer-Verlag. 2001. ISBN 978-1-55608-010-4.
- Weisstein, Eric Wolfgang. “Continuous function”. 《Wolfram MathWorld》 (영어). Wolfram Research.
- Weisstein, Eric Wolfgang. “Continuous map”. 《Wolfram MathWorld》 (영어). Wolfram Research.
- Weisstein, Eric Wolfgang. “Piecewise continuous”. 《Wolfram MathWorld》 (영어). Wolfram Research.