면적분

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기

미적분학에서, 면적분(面積分, 영어: surface integral)은 3차원 유클리드 공간에 매장된 곡면 위에 정의된 함수에 대한 적분이다. 평면 위에 정의된 함수의 이중 적분을 일반화한 개념이다.

정의[편집]

직사각형과 유사한 작은 도형들로 분할된 곡면
스칼라 장의 면적분을 정의하려면 곡면을 작은 면적소들로 나누어야 한다.

스칼라 장의 경우[편집]

3차원 좌표 공간 속의 곡면과 그 위의 한 면적소
곡면의 면적소들의 면적이 한없이 작아질 때, 이에 대응하는 리만 합은 스칼라 장의 면적분에 한없이 가까워진다.

스칼라 장 곡면 () 위의 면적분은 다음과 같다.

여기서 제1 기본 형식행렬식이다.

특히, 곡면 면적은 다음과 같다.

벡터 장의 경우[편집]

곡면 위의 벡터 장

벡터 장 의, 곡면 () 위의 면적분은 다음과 같다.

같이 보기[편집]

외부 링크[편집]