벡터공간

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

벡터공간 혹은 선형공간선형대수학의 기본적인 개념이다. 이 개념은 기하학적 벡터의 집합을 일반화한 것으로, 현대 수학의 모든 분야에서 두루 사용된다.

정의와 성질[편집]

벡터 공간을 정의하기 위해서는 F (실수체(實數體), 복소수체(複素數體) 등)가 필요하며, F의 원소들을 스칼라라고 부른다. 이때 집합 V에 대해 두 연산

  • v, w ∈ V일 때 V + V → V인 연산 벡터 덧셈(v + w)과
  • v ∈ V, a ∈ F일 때 F × V → V인 연산 스칼라 곱(a v)

이 정의되고 아래의 성질(공리)들을 만족하면 집합 V를 체 F 위의 벡터공간(vector space over a field F)이라 하며, V의 원소를 벡터라고 부른다.

u, v, wV이고 a, b ∈ F라 하자.

  1. v+w 이 다시 V에 속한다.

    V 가 덧셈에 대해 닫혀있다. 이 공리는 연산의 정의가 이미 내포하고 있기 때문에 표시하지 않을 때도 있다.

  2. u+(v+w)= (u+v)+w.

    V 에서 덧셈에 대한 결합법칙이 성립한다.

  3. V 에 0이 존재하여, V 의 임의의 원소 v에 대해 v+0=v.

    V 에 덧셈에 대한 항등원이 존재한다.

  4. V 의 임의의 원소 v 에 대해, v+(-v)=0 를 만족시키는 -v 가 V 안에 존재한다.

    V 에 덧셈에 대한 역원이 존재한다.

  5. v+w=w+v.

    벡터 덧셈에 대한 교환법칙이 성립한다.

  6. a v 가 V 의 원소이다.

    V 가 스칼라 곱에 대해 닫혀있다. 이것도 1번과 마찬가지로 표시하지 않을 때도 있다.

  7. a (b v)=(a b) v.

    스칼라 곱에 대한 결합법칙이 성립한다.

  8. 1 이 체 F의 곱셈에 대한 항등원일 때, 1 v=v.

    스칼라 곱에 대한 항등원이 있다.

  9. a (v+w)=a v+a w

    벡터 덧셈에 대한 분배법칙이 성립한다.

  10. (a+b) v=a v+b v

    스칼라 덧셈에 대한 분배법칙이 성립한다.

이 성질들은 모듈의 성질과 같다. 실제로, 벡터 공간은 체 위에서의 모듈이 된다.

성질 1부터 5까지는 V 가 벡터 덧셈에 대해 가환군(可換群)(혹은 아벨 군)을 이룬다는 것을 말하고. 성질 6부터 10까지는 V 의 원소 벡터 v에 F 의 원소 a 를 스칼라 배하는 것에 대한 성질이다. (실제로, 성질 5는 나머지 아홉 성질로부터 유도할 수 있다.)

위 성질들로부터 다음과 같은 공식을 바로 유도할 수 있다. 임의의 a ∈ Fv ∈ V에 대해,

a 0 = 0 v = 0
-(a v) = (-a) v = a (-v)

이 성립한다.

벡터 공간은 (群 ; group), (환 ; ring), (體 ; field)처럼 완전히 추상적인 개념이다. 어떤 집합 V 가 벡터공간인지를 판단하기 위해서는 우선 집합 V 와 체 F 에 해당하는 집합을 정확히 기술하고, V 에서의 벡터합과 스칼라 곱을 정의해야 한다. 그리고, 정의된 두 집합과 연산이 위의 조건들을 만족하는지를 알아보면 된다.

[편집]

  • 가장 친숙한 벡터 공간으로는 유클리드 공간이 있다. Rn으로 표기하며, 원소는 n개 실수의 순서쌍이다. 연산은 실수에서의 연산을 각 성분에 적용시키면 된다. 이 공간을 일반화하여 체 F위의 벡터 공간 Fn을 얻는다.
  • 각 성분이 복소수인 (mxn) 행렬의 집합은 C 상의 벡터 공간이 된다. 일반화하여 어떤 체 F 의 원을 성분으로 갖는 (mxn) 행렬 공간을 생각할 수 있다.
  • 닫힌 구간 [a, b]에서 연속인 모든 실함수의 집합 C[a, b]R 상의 벡터 공간이다.
  • F 상의 벡터 공간 V 와 어떤 집합 X 가 주어졌을 때, X 에서 V 로의 함수 f: X -> V 들의 집합은 F 상의 벡터 공간을 이룬다.
  • F 의 원을 계수로 취하는 모든 다항식의 집합 F[x]는 F 상의 벡터 공간이다.
  • 유한체(finite field) GF(pn)는 GF(p) 상의 벡터공간이다.
  • CR상의 벡터공간이다.
  • RQ상의 벡터공간이다(Q유리수 전체의 집합이다.)

특별히, 실수 집합 R 위의 벡터공간을 실벡터공간(real vector space)이라고 하며 복소수 집합 C 위의 벡터공간을 복소벡터공간(complex vector space)라고 한다.

벡터 공간에 성질을 추가하여 만든 구조로는 거리의 개념을 준 노름 공간(normed vector space), 각의 개념을 준 내적 공간(inner product space), 위상적 성질을 가진 위상 벡터 공간(topological vector space), 벡터 곱을 준 다원환(algebra) 등이 있다.

부분공간(subspace)과 기저(basis)[편집]

주어진 벡터 공간 V에 대해서, V의 부분집합 W가 1) 덧셈에 대해서 닫혀있고, 2) 스칼라 곱에 대해서도 닫혀 있으면, 이 W를 V의 부분공간이라고 부른다. 부분공간이 그 자체로 벡터 공간이 되는 것은 자명하다. 어떤 주어진 벡터들의 집합 S를 포함하는 모든 부분공간들의 교집합을 'S의 생성(span)'이라고 부른다. 만약, S에서 어떤 벡터를 뺐을 때 'S의 생성'의 차원이 줄어든다면, 이 집합 S를 두고 우리는 선형독립이라고 부른다. 만약 S가 선형독립이고, S의 생성이 전체 벡터 공간인 경우, 우리는 이 S를 기저라고 부른다.

주어진 벡터 공간에 대해서, 모든 기저들은 항상 같은 기수를 가진다. 한편, 초른의 보조정리(혹은 선택 공리)를 사용하면, 모든 벡터 공간은 어떤 기저를 가진다는 것을 보일 수 있고, 고정된 하나의 벡터공간에 대응되는 모든 기저들은 같은 위수를 가진다. 이 수를 차원이라고 부른다. 바탕 가 같고 차원이 같은 두개의 벡터 공간은 항상 동형(isomorphic)이다. 예를들어서, 실벡터공간들은 항상 R0, R1, R2, R3, ..., R, ... 들 뿐이다. R3 의 차원은 3이다.

선형 사상[편집]

바탕 체가 같은 벡터 공간 V와 W가 주어졌을 때 V에서 W로의 선형 사상(또는 선형 변환)을 정의할 수 있다. 이는 V에서 W로의 사상 중 선형 구조의 호환을 유지하는 사상, 즉 합과 곱을 보존하는 사상을 뜻한다. V에서 W로의 모든 선형 사상의 집합은 L(V,W)로 표시하는데 이 집합도 같은 체를 바탕으로 하는 벡터 공간이다. V와 W 양쪽의 기저가 주어졌다면 선형 사상은 성분들에 의하여 행렬로 나타낼 수 있다.