직교

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

수학에서, 직교(直交, 영어: orthogonality)는 기하학수직을 일반화하여 얻는 개념이다. 두 벡터내적이 0일 때, 다시 말해 이 둘이 직각을 이룰 때, 이 두 벡터가 서로 직교한다고 한다. 기호는 .

정의[편집]

가군 의 원소 쌍대 가군 의 원소 을 만족시키면, 이 서로 직교한다고 한다. 만약 부분 가군 의 모든 원소가 쌍대 가군의 부분 가군 의 모든 원소와 직교한다면, 가 서로 직교한다고 한다.

특히, 내적 공간 속의 두 벡터 가 만약 를 직교하게 만든다면, 즉 이라면, 다시 말해 사이의 각이 직각이라면, 가 서로 직교한다고 한다. 쌍마다 직교하는 벡터들의 집합을 직교 집합(直交集合, 영어: orthogonal set)이라고 한다. 직교 집합에서 영벡터를 제거하면 항상 선형 독립 집합이 된다.[1] 직교 집합을 이루는 기저직교 기저(直交基底, 영어: orthogonal basis)라고 한다. 이보다 더 자주 사용되는 개념은 정규 직교 집합(正規直交集合, 영어: orthonormal set)과 정규 직교 기저인데, 이는 단위 벡터로 구성된 직교 집합(기저)를 뜻한다. 만약 부분 공간 속의 각 벡터가 부분 공간 속의 각 벡터와 직교한다면, 가 서로 직교한다고 한다. 어떤 부분 공간과 직교하는 최대 부분 공간을 직교 여공간이라고 한다.

[편집]

유클리드 공간의 벡터의 수직은 내적 공간 속 벡터의 직교의 특수한 경우이다.

내적 공간의 원소가 함수일 경우, 그 속의 직교 집합을 직교 함수족이라고 한다.

각주[편집]

  1. Hoffman, Kenneth (1971년 4월 1일). 《Linear Algebra》 (영어) 2판. Prentice Hall. ISBN 0-13-536797-2. 

외부 링크[편집]