가역행렬

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기

선형대수학에서, 가역 행렬(可逆行列, 영어: invertible matrix) 또는 정칙 행렬(正則行列, 영어: regular matrix) 또는 비특이 행렬(非特異行列, 영어: non-singular matrix)은 그와 곱한 결과가 단위 행렬행렬을 갖는 행렬이다. 이를 그 행렬의 역행렬(逆行列, 영어: inverse matrix)이라고 한다.

정의[편집]

위에서 정의된 행렬 에 대하여, 다음 세 조건이 서로 동치이다. 이 조건이 성립할 경우 역행렬이라고 하며, 와 같이 표기한다.

  • (여기서 단위 행렬이다.)

위에서 정의된 행렬 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 가역 행렬이라고 한다.

  • 역행렬을 갖는다.
  • 유일한 역행렬을 갖는다.
  • 유한 개의 기본 행렬의 곱이다.
  • 단위 행렬행동치이다.
  • 단위 행렬과 열동치이다.
  • 단위 행렬과 동치이다.
  • 방정식 의 해는 뿐이다.
  • 방정식 의 해는 의 값과 무관하게 항상 유일하다.
  • 의 열이 기저를 이룬다.
  • (여기서 행렬식이다.)
  • (여기서 계수이다.)
  • 0을 고윳값으로 가지지 않는다.


성질[편집]

전치 행렬과의 관계[편집]

위에서 정의된 행렬 에 대하여, 다음 조건들이 서로 동치이다.

  • 는 가역 행렬이다.
  • 는 가역 행렬이다.
  • 는 가역 행렬이다.

항등식[편집]

위에서 정의된 행렬 에 및 스칼라 에 대하여, 다음과 같은 항등식들이 성립한다.

즉, 체 위의 가역 행렬의 집합은 을 이루며, 이를 일반선형군 이라고 한다. 또한, 역행렬은 일반선형군의 자기 반대 동형을 정의한다.

계산[편집]

가우스 소거법[편집]

가우스 소거법은 어떤 행렬이 가역행렬인지를 판단하고 그 행렬의 역행렬을 구할 수 있는 알고리즘이다. LU 분해를 이용해 두 개의 삼각행렬로 분해하면 가우스 소거법을 더 빨리 계산할 수 있다. 또는 행렬을 을 원소로 갖는 행렬로 나누어 재귀적으로 계산하면 행렬의 특성에 따라 더 빠른 계산이 가능하다.

수치해석적 방법[편집]

행렬의 공통인자(소행렬식)로 이루어진 행렬을 구해 계산하면 작은 크기의 행렬에 대해서는 더 빨리 계산할 수도 있다. (큰 행렬에 대해서는 적당치 않을수있다) 다음과 같이 공통인자 행렬을 구한다.


가 홀수일 때 () 즉, (행렬식에서 -계산되므로 이 조건은 행렬식에 포함된 내용이다.)

여기서 행렬식을 가리키고 는 행렬의 공통인자, 전치행렬을 가리킨다.

수치 해석에서 대부분의 경우 선형 시스템을 풀기 위해 역행렬을 구할 필요는 없기 때문에 이 방법으로 실제로 역행렬을 구하는 경우는 별로 없다.

2 × 2 행렬의 역행렬[편집]

위의 공통인자 방정식에서 이 2일 경우 다음과 같은 식을 유도할 수 있다.

2 × 2 행렬의 역행렬은 위 방법을 통해 빠르게 계산할 수 있다.

3 × 3 행렬의 역행렬[편집]

위의 공통인자 방정식에서 이 3일 경우 다음과 같은 식을 유도할 수 있다.

3 × 3 행렬의 역행렬은 위 방법을 통해 빠르게 계산할 수 있다.

작은 블록으로 나눠서 계산하는 법[편집]

다음과 같은 식을 이용하면 행렬을 몇 개의 작은 블록 행렬로 나누어 계산할 수 있다.

는 행렬의 임의의 작은 블록이다. 이 방법은 가 대각행렬이고 슈어 보수행렬 이 작은 크기일 때 특히 유용하다. 두 개의 행렬에 대한 역행렬만 계산하면 되기 때문이다. 이 방법은 행렬을 더 빠르게 곱하는 슈트라센 알고리즘의 개발자 포커 슈트라센이 발견했다.

역행렬의 도함수[편집]

행렬 라는 변수에 따라 변한다고 하자. 이때 의 역행렬의 도함수는 다음과 같다.

역행렬과 행렬의 나눗셈[편집]

행렬에서,

이고, 이다.
이다.

스칼라 행렬는,

이고, 이다.

대각화행렬에서는

임의의 행렬 A를 예약하고 고윳값 행렬 P를 조사하고 P 의 역행렬 P-1를 통해서,

대각화 행렬 AD를 얻을수있다. 여기서,

처럼 대각화행렬에서는 역행렬의 나눗셈 성질을 갖는다.

함께보기[편집]

외부 링크[편집]