튜플

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

튜플(영어: tuple)은 기본적으로 유한한 사물을 순서있게 열거한 것을 가리키는 수학 용어이며, 또한 어떤 순서를 따르는 요소들을 포함한 집합을 가리키는 용어이기도 하다. n 개의 요소를 가진 튜플을 n-튜플 또는 n(영어: n-tuple)이라고 한다. 비어있는 은 유일한 0-튜플이다. 임의의 n-튜플은 순서쌍의 개념을 이용하여 재귀적으로 정의된다. 튜플은 다른 수학 개념들(예를 들어 벡터)을 나타내는 데에 자주 사용된다.

튜플은 보통 원소들을 괄호 "( )" 안에 쉼표 ","로 구분하여 나열하여 표시한다. 5-튜플의 예를 들면 (2, 7, 4, 1, 7)와 같다. 때로는 대괄호 "[ ]"나 꺾쇠 괄호 "< >"와 같은 다른 부호를 사용하기도 한다. 중괄호 "{ }"는 집합을 표시할 때 쓰이기 때문에 튜플 표시에는 사용하지 않는다.

컴퓨터 과학에서, 튜플은 어떤 요소의 집합, 혹은 테이블에서의 행을 가리킨다(레코드와 동일한 의미). 단, 일반적인 집합과는 달리 중복이 허용될 수 있다.

튜플의 개념은 언어학[1]철학[2]에서도 사용된다.

성질[편집]

튜플의 기본 성질은 같음의 정의로 나타낼 수 있다. 일반적으로 두 n-튜플

(a_1,a_2,\ldots,a_n),
(b_1,b_2,\ldots,b_n)

이 같을 필요충분조건은 다음과 같다.

a_1=b_1,a_2=b_2,\ldots,a_n=b_n

때문에 튜플은 집합과 다른 많은 성질을 갖는다.

  1. 중복된 원소가 있을 수 있다. 정확히 말해, 어떤 튜플의 한 원소를 중복해서 쓰면 다른 튜플이 된다.
    (1,2,3)\ne(1,2,2,3), 하지만 \{1,2,3\}=\{1,2,2,3\}
  2. 정해진 순서가 있다. 튜플의 원소들의 순서를 바꾸면 다른 튜플이 될 수 있다.
    (1,2,3)\ne(3,2,1), 하지만 \{1,2,3\}=\{3,2,1\}
  3. 튜플의 원소의 개수는 유한하다. 하지만 집합, 그리고 중복집합은 원소 개수가 무한할 수도 있다.

정의[편집]

다음은 튜플에게 위의 성질을 부여할 수 있는 구성적 정의들이다.

함수[편집]

n-튜플을 정의역이 튜플의 원소들의 첨수들의 집합, 공역이 튜플의 원소들이 이루는 집합인 함수로 정의할 수 있다. 함수의 정의가 필요로 하는 순서쌍의 개념은 미리 정의되어야 한다. 이를 공식화하면

(a_1,a_2,\ldots,a_n)\equiv(X,Y,F)

여기서

X=\{1,2,\ldots,n\}
Y=\{a_1,a_2,\ldots,a_n\}
F=\{(1,a_1),(2,a_2),\ldots,(n,a_n)\}, 즉 \forall k\in\{1,2,\ldots,n\}:f(k)=a_k

더 간단하게 말하면 다음과 같다.

(a_1,a_2,\ldots,a_n):=(F(1),F(2),\ldots,F(n))

내포된 순서쌍[편집]

집합론에서는 튜플을 내포된 (nested) 순서쌍으로 정의한다. 이 방법에서도 그 전에 순서쌍의 정의를 마쳐야 한다.

  1. 0-튜플, 즉 비어있는 튜플은 공집합 \emptyset로 정의한다.
  2. (n-1)-튜플이 정의되었을 때, n-튜플은 순서쌍이다. 그 첫번째 성분은 n-튜플의 첫번째 성분이고, 두번째 성분은 n-튜플의 나머지 성분들로 이루어진 (n-1)-튜플이다.
    (a_1,a_2,a_3,\ldots,a_n)=(a_1,(a_2,a_3,\ldots,a_n))

이 정의를 조금 큰 n에 대해 펼쳐보면 다음과 같다.

(a_1,a_2,a_3,\ldots,a_n)=(a_1,(a_2,(a_3,(\ldots,(a_{n-2},(a_{n-1},(a_n,\emptyset)))\ldots))))

예를 들면,

\begin{array}{rclclcl}
(1,2,3) & = & (1,(2,3)) & = & (1,(2,(3,\emptyset))) \\
(1,2,3,4) & = & (1,(2,3,4)) & = & (1,(2,(3,4))) & = & (1,(2,(3,(4,\emptyset)))) \\
\end{array}

다음의 정의는 위 정의에서 방향만 바뀐 경우이다.

  1. 0-튜플은 공집합이다.
  2. (n-1)-튜플이 정의되었을 때, n-튜플의 정의는 아래와 같다.
    (a_1,a_2,\ldots,a_{n-1},a_n)=((a_1,a_2,\ldots,a_{n-1}),a_n)

m 개의 대상의 n-튜플[편집]

형 이론[편집]

같이 보기[편집]

각주[편집]

  1. “N‐tuple - Oxford Reference” (영어). 《oxfordreference.com》. 1 May 2015에 확인함. 
  2. “Ordered n-tuple - Oxford Reference” (영어). 《oxfordreference.com》. 1 May 2015에 확인함.