연속 함수: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
편집 요약 없음
잔글편집 요약 없음
4번째 줄: 4번째 줄:
== 정의 ==
== 정의 ==
[[파일:continuity topology.svg|thumb|right|300px|점에서의 연속성]]
[[파일:continuity topology.svg|thumb|right|300px|점에서의 연속성]]
[[위상공간 (수학)|위상 공간]] <math>X</math> 및 <math>Y</math> 사이의 [[함수]] <math>f\colon X\to Y</math> 및 점 <math>x\in X</math>가 다음 조건을 만족시킨다면, <math>f</math>가 '''점 <math>x</math>에서 연속 함수'''이다({{lang|en|continuous at the point ''x''}})라고 한다.
[[위상 공간 (수학)|위상 공간]] <math>X</math> 및 <math>Y</math> 사이의 [[함수]] <math>f\colon X\to Y</math> 및 점 <math>x\in X</math>가 다음 조건을 만족시킨다면, <math>f</math>가 '''점 <math>x</math>에서 연속 함수'''이다({{lang|en|continuous at the point ''x''}})라고 한다.
* 임의의 점 <math>x\in X</math> 및 [[근방]] <math>V\ni f(x)</math>에 대하여, <math>f(U)\subseteq V</math>인 <math>x</math>의 [[근방]] <math>U\ni x</math>가 존재한다.
* 임의의 점 <math>x\in X</math> 및 [[근방]] <math>V\ni f(x)</math>에 대하여, <math>f(U)\subseteq V</math>인 <math>x</math>의 [[근방]] <math>U\ni x</math>가 존재한다.


[[위상공간 (수학)|위상 공간]] <math>X</math> 및 <math>Y</math> 사이의 [[함수]] <math>f\colon X\to Y</math>에 대하여, 다음 조건들이 서로 [[동치]]이며, 이를 만족시키는 함수를 '''연속 함수'''라고 한다.
[[위상 공간 (수학)|위상 공간]] <math>X</math> 및 <math>Y</math> 사이의 [[함수]] <math>f\colon X\to Y</math>에 대하여, 다음 조건들이 서로 [[동치]]이며, 이를 만족시키는 함수를 '''연속 함수'''라고 한다.
* 임의의 [[열린 집합]] <math>U\subseteq Y</math>에 대하여, [[원상 (수학)|원상]] <math>f^{-1}(Y)\subseteq X</math>는 [[열린 집합]]이다.
* 임의의 [[열린 집합]] <math>U\subseteq Y</math>에 대하여, [[원상 (수학)|원상]] <math>f^{-1}(Y)\subseteq X</math>는 [[열린 집합]]이다.
* 임의의 [[닫힌 집합]] <math>C\subseteq Y</math>에 대하여, [[원상 (수학)|원상]] <math>f^{-1}(C)\subseteq X</math>는 [[닫힌 집합]]이다.
* 임의의 [[닫힌 집합]] <math>C\subseteq Y</math>에 대하여, [[원상 (수학)|원상]] <math>f^{-1}(C)\subseteq X</math>는 [[닫힌 집합]]이다.
79번째 줄: 79번째 줄:
* [[립시츠 연속 함수]]
* [[립시츠 연속 함수]]
* [[동등연속]]
* [[동등연속]]
* [[유계작용소]]
* [[유계 작용소]]


[[분류:연속함수| ]]
[[분류:연속함수| ]]

2015년 1월 20일 (화) 20:52 판

위상수학해석학에서, 연속 함수(連續函數, 문화어: 련속함수, 영어: continuous function)는 정의역의 점의 "작은 변화"에 대하여, 치역의 값 역시 작게 변화하는 함수이다.

정의

점에서의 연속성

위상 공간 사이의 함수 및 점 가 다음 조건을 만족시킨다면, 에서 연속 함수이다(continuous at the point x)라고 한다.

  • 임의의 점 근방 에 대하여, 근방 가 존재한다.

위상 공간 사이의 함수 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 함수를 연속 함수라고 한다.

  • 임의의 열린 집합 에 대하여, 원상 열린 집합이다.
  • 임의의 닫힌 집합 에 대하여, 원상 닫힌 집합이다.
  • 의 모든 점에서 연속 함수이다.
  • 임의의 부분 집합 에 대하여, 항상 이다. 여기서 폐포를 일컫는다.

위상 공간 사이의 함수 가 다음 조건을 만족시킨다면, 점렬 연속 함수(點列連續函數, 영어: sequentially continuous function)라고 한다.

  • 임의의 점렬 및 점 에 대하여, 만약 라면 이다.

좌·우 연속성

어떤 구간 위상 공간 사이의 함수 및 실수 에 대하여, 다음을 정의하자.

  • 만약 라면, 에서 우연속 함수(영어: right-continuous function)이다.
  • 만약 라면, 에서 좌연속 함수(영어: left-continuous function)이다.

성질

연속함수는 위상공간의 몇가지 성질을 보존하기 때문에 매우 유용하다.

임의의 두 위상 공간 , 사이의 점렬 연속 함수는 항상 연속 함수이다. 만약 제1 가산 공간이라면, 사이의 함수에 대하여 연속 함수와 점렬 연속 함수가 서로 동치이다.

거리 공간에서의 연속 함수

거리 공간 사이의 함수 및 점 에 대하여, 다음 두 조건이 서로 동치이다.

  • 에서 연속 함수이다.
  • 임의의 양의 실수 에 대하여, 다음 조건을 만족시키는 양의 실수 이 존재한다.
    • 임의의 에 대하여, 만약 라면, 이다.

실수값 연속 함수

임의의 위상 공간 위의 두 연속 함수

에 대하여, 다음이 성립한다.

  • 는 연속 함수이다.
  • 는 연속 함수이다.
    • 상수 함수는 연속 함수이므로, 만약 가 임의의 실수 라면, 는 연속 함수이다.
  • 만약 모든 에 대하여 이라면, 는 연속 함수이다.

실수 위의 함수

실수 구간 으로부터 위상 공간 로 가는 함수 및 임의의 실수 에 대하여, 다음이 성립한다.

  • 에서 좌연속 함수이며 우연속 함수이다.
  • 에서 연속 함수이다.

실수선에 표준적인 위상을 정의하였을 때, 다음 함수들은 연속 함수이다.

  • 모든 다항식
  • 지수 함수
  • 사인
  • 코사인
  • 절댓값

다음 함수는 연속 함수가 아니다.

  • 부호 함수

참고 문헌

바깥 고리

같이 보기