선형대수학

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

선형대수학(線型代數學, 영어: linear algebra)은 벡터 공간, 벡터, 선형 변환, 행렬, 연립 선형 방정식 등을 연구하는 대수학의 한 분야이다. 현대 선형대수학은 그중에서도 벡터 공간이 주 연구 대상이다. 추상대수학, 함수해석학에 널리 쓰이고 있다.

선형대수학은 자연과학공학에도 널리 활용된다. 선형 연립방정식을 푸는 좋은 방법으로는 소거법행렬식이 있다.

기초[편집]

선형대수학은 2차원 혹은 3차원의 직교 좌표계에 대한 연구로 부터 시작되었다.

선형대수학에서 기본적인 정의는 다음과 같다.

  • 벡터: 크기와 방향성을 갖는 성분. 물리학에서 주로 쓰인다.
  • 벡터 연산: 두 벡터끼리의 합, 혹은 벡터와 스칼라(크기만 있고 방향성은 없는 성분)사이의 곱이 벡터의 기본 연산이다.
  • 벡터 공간: 벡터의 기본 연산을 만족하는 모든 벡터의 모음을 뜻한다.
  • 차원: 흔히 평면을 2차원, 공간을 3차원이라고 부른다. 이때 차원을 구성하는 각각의 요소(3차원의 경우 x,y,z)는 서로 독립적인데 이에 대한 개념을 확장한 것이 바로 선형대수학의 차원이다.
  • 행렬: 여러개의 숫자들을 직사각형의 모양으로 한데 묶어 나타낸 성분. 벡터를 하나의 행 혹은 하나의 열로 구성된 행렬로 볼 수도 있다.

보통 3차원까지의 벡터는 그림 등으로 시각적 표현이 가능하지만 그 이상의 벡터는 벡터의 각 구성요소를 괄호 안에 나열함으로써 표기한다.

여러 가지 문제를 수학으로 해결하는 데 있어 선형대수학의 개념은 매우 중요한데, 선형화 혹은 선형 근사를 통해, 복잡한 비선형 방정식 문제를 간단한 선형 방정식 문제로 변환해 문제를 해결할 수 있기 때문이다.

선형성[편집]

선형대수학의 선형성(영어: linearity)이라는 성질은 직관적으로는 아래와 같은 개념에서 시작되었다.

y = a_1 \cdot x_1 + a_2 \cdot x_2 + \cdots + a_n \cdot x_n(a_k는 상수를, x_k는 변수를 가리킨다)

이와 같이 선형성은 변수의 지수승(x^n)을 가리키는 것이 아니라 일차함수(x^1)와 같은 형태를 가리킨다. 선형과 대립되는 개념으로 비선형이 있는데, x^n, \sin x, \cos x 등 일차함수와 같은 형태의 성질을 만족시키지 않는 함수들을 가리킨다. 선형의 직관적인 이해는 일차함수와 동일시해서 생각해도 좋다. 하지만 선형의 엄밀한 의미는 일차함수보다 더 확장된다. 수학적으로 정확한 선형의 설명은 다음과 같다.

(정의) 정의역 X에서 임의의 원소 u, v를 치역 Y에 대응시키는 연산 T는 다음과 같은 성질을 만족시킬 때 "선형"이라고 한다. 여기서 c는 임의의 상수이다.

(1) T(cu) = cT(u)
(2) T(u+v) = T(u) + T(v)

예를 들어 일차함수 y(x)=x를 생각해보자. y(cu)=(cu)=c(u)=c y(u)로 (1)번 조건을 만족시키고 y(u+v)=(u+v)=u+v=y(u)+y(v)로 (2)번조건을 만족시킨다. 그러므로 이 함수는 선형이다. 이차함수 y(x)=x^2의 경우에는 y(cu)=(cu)^2=c^2u^2=c^2(y(u))^2로 조건을 만족시키지 않는다. 다른 선형연산의 예로는 회전변환, 원점을 지나는 직선에 대한 대칭변환, 어떤 벡터공간에 대한 수직입사 등이 있다.

"선형"이라는 성질은 행렬과 동전의 양면과 같은 관계를 가지고 있다. 어떤 연산이 선형이라면 그것은 행렬로 표현이 가능하며, 어떤 행렬은 반대로 어떤 선형연산으로 해석될 수 있다. 이 선형대수학의 행렬이론은 수학의 이론뿐만 아니라 물리학, 전자공학, 컴퓨터 그래픽, 기계공학 등에 널리 쓰이고 있다.

학부과정[편집]

학부과정에서 가르치는 선형대수학의 내용들은 다음과 같다. 다만 이 내용은 일반적으로 이와 같이 가르치는 내용이며 각 학교마다 비중있게 다루는 부분이 다를 수 있고 내용을 추가하거나 뛰어넘을 수 있다.

  • 벡터행렬 : 벡터의 개념과 행렬의 개념에 대해 강의한다. 이에 대한 내용은 앞의 '기초'와 행렬문서를 참고하라.
  • 가우스조던 소거법: 가우스조던 소거법은 행렬의 행 간의 연산이다. 이 연산은 행렬로 구성된 방정식의 해를 구하는 방법을 제시한다. 또한 이 계산과정을 뒷받침하는 이론에 대해서도 공부하며, 소거법의 결과로 구해진 해를 해석하는 방법도 공부한다. 참고로, 가우스-조던 소거법은 방정식의 해를 보존할 수 있는 연산들로 이루어져 있으며, 세가지가 존재한다.
    • 1. 행렬의 행을 그 행의 상수배만큼으로 대체하여도 그 행렬 방정식의 해는 보존된다.
    • 2. 행렬의 한 행의 상수배를 다른 행에 더하더라도 그 행렬 방정식의 해는 보존된다.
    • 3. 행렬의 한 행과 다른 행을 교환하더라도 그 행렬 방정식의 해는 보존된다.
  • 일차독립: 벡터들의 일차독립에 대해 가르친다. 행렬을 통한 일차독립 판별에 대해 공부한다.
  • 행렬식(판별식): 행렬식의 정의와 행렬식을 구하는 방법을 공부한다. 또한 대수적으로 행렬식을 표현하고 행렬식에 관계된 정리들을 배운다.
  • 고유벡터고윳값: 행렬의 고윳값과 고유벡터에 대해 공부한다. 행렬식을 통해 고윳값을 찾고, 고윳값과 가우스 소거법을 통해 고유벡터를 찾는 과정을 익힌다. 그 외에도 고윳값과 고유벡터에 관계된 정리들에 대해 공부한다.
  • 선형연산자: 이 문서의 '선형'을 참조하라. 특히, 이 부분에서는 선형연산과 행렬 간의 상호성에 대해 주의 깊게 다룬다.
  • 직교행렬: 직교화된 연산과 행렬에 대해 공부한다. 직교행렬이란 그것의 전치행렬과 그것의 역행렬이 같은 경우를 말한다. 직교화된 연산이란 연산대상 벡터의 크기가 보존되고 벡터들의 내적이 보존되는 경우를 말한다.
  • 벡터공간: 벡터공간을 행렬을 통해 해석하는 방법을 익힌다. 선형연산과 행렬 간의 상호성과 마찬가지로 벡터공간과 행렬 간에는 깊은 상호성이 있다. 중요한 개념들로는 다음과 같은 것들이 있다.
    • 기저, 차원: 기저란, 어떤 벡터공간을 이루는 벡터들을 말한다. 이 벡터들은 일차독립이여야 하며, 이 벡터들의 선형조합으로 그 벡터공간의 모든 벡터를 표현할 수 있어야 한다. 직관적인 예를 들면 x축, y축, z축은 3차원공간의 기저이다. 차원이란 기저를 구성하는 벡터들의 숫자를 말한다.
    • 기본공간, 차원정리, 계수정리, 피봇정리: 기본공간은 행렬과 벡터공간 사이의 다리와 같은 역할을 한다. 기본공간에는 영공간, 행공간, 열공간 등이 있다. 차원정리, 계수정리, 피봇정리는 이 기본공간들의 차원과 기저에 대해 유용한 알고리즘을 제공한다.
    • 벡터의 직교화: 직교화된 벡터들에 대해 공부한다. 직교화된 벡터들이란 다른 벡터와의 내적값이 0인 벡터들을 의미한다.
  • 그람-슈미트 직교정규화: 그람-슈미트 직교정규화를 통해 주어진 벡터의 집합을 직교화된 벡터의 집합으로 변환하는 법을 다룬다. 벡터의 직교화에서 배운 개념을 바탕으로 전개해 나간다.
  • 상사성대각화: 상사성이란 두 행렬이 동일한 연산을 의미한다는 뜻이다. 즉, 두 행렬이 서로 다른 두 벡터공간에서 동일한 연산을 처리하고 있다는 의미이다. 그러므로 상사성을 가진 두 행렬은 적당한 기저를 선택해서 서로를 표현할 수 있다. 대각화란 이 상사성을 계산 측면에서 응용한 것으로 특정 행렬을 대각행렬로 표현하는 과정이다.
  • 이 외에도 복소수 고윳값, 벡터공간의 공리 등에 대해 다루기도 한다.

유용한 정리들[편집]

  • 모든 벡터 공간은 기저가 존재한다.
  • 행렬의 역행렬이 존재할 필요충분조건행렬식의 값이 0이 아니어야 한다.
  • 행렬의 역행렬이 존재할 필요충분조건은 행렬로 표현할 수 있는 선형 변환동형사상이어야 한다.
  • 행렬의 고윳값들의 곱은 행렬식의 값과 같으며, 합은 행렬의 대각합과 같다.

참고 문헌[편집]

바깥 고리[편집]