원주율

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
Pi-symbol.svg
3.1415926535……
수학 체계
기초

복소수의 확장
기타

허수 단위
원주율 ≈ 3.14159 26535 ...
자연로그의 밑 ≈ 2.71828 ( )

주요 상수

π - e - √2 - √3 - √5 -
γ - φ - β* - δ - α -
C2 - M1 - B2 - B4 - Λ -
K - K - K - L - μ -
EB - Ω - β - λ - D(1) -
λμ - Cah. - Lap. - A-G - Λ -
K-L - Apr. - θ - Bac. - Prt. -
Lb. - Niv. - Sie. - Kin. - F - L

원주율(圓周率)은 지름에 대한 둘레비율을 나타내는 수학 상수이다. 수학물리학의 여러 분야에 두루 쓰인다. 그리스 문자 π로 표기하고, 파이(π)라고 읽는다.[1] 원주율은 수학에서 다루는 가장 중요한 상수 가운데 하나이다.[2] 무리수인 동시에 초월수이다. 아르키메데스의 계산이 널리 알려져 있어 '아르키메데스 상수'라고 부르기도 하며, 독일에서는 1600년대 뤼돌프 판 쾰런이 소수점 이하 35자리까지 원주율을 계산한 이후 '뤼돌프 수'라고 부르기도 한다.[3] 원주율의 값은 3.1415926535897932... 로, 순환하지 않는 무한소수이기 때문에 근삿값으로 3.14를 사용한다.

개요[편집]

원의 지름이 1일 때, 원주는 π이다.

유클리드 평면에서 은 크기와 관계없이 언제나 닮은 도형이다. 따라서 원의 지름에 대한 둘레는 언제나 일정하며, 이를 원주율이라 한다. 즉, 원의 지름을 d, 둘레를 C라 하면 원주율 π는 다음의 식으로 나타낼 수 있다.[4]

원주율을 나타내는 기호 π는 1706년 영국의 수학자 윌리엄 존스가 최초로 사용했다. 이것은 둘레를 뜻하는 고대 그리스어 "페리페레스"(περιφηρής) 또는 "페리메트론"(περίμετρον)의 첫 글자를 딴 것이다.[5] 윌리엄 존스는 “특정 도형의 길이나 넓이를 구하는 계산에 매우 유용한 방법이 여러 가지 있다. 원을 예로 들면 지름이 1인 원의 둘레를 약 3.14159…= π로 표기하는 것이다.”라고 기호 π의 사용을 제안하였다.[6]

원주율은 소수점 아래 어느 자리에서도 끝나지 않고, 순환마디도 없이 무한히 계속되는 비순환소수이다. 원주율이 무리수라는 것은 1761년 요한 하인리히 람베르트가 증명했다. 원주율의 소수점 이하에서 나타나는 수열은 무작위 표집을 통해 만드는 난수표와 성질이 같다.[7] 원주율은 십진법으로는 값을 정확하게 표기할 수 없기 때문에 실제 계산에서는 근삿값을 이용한다.


원의 넓이 = π × 반지름2
원의 둘레 = π × 지름
다빈치의 원의 넓이 계산

아래의 표는 원주율의 값을 소수점 아래 10000번째 자리까지 나타낸 것이다.[8]

소수점 아래 10000번째 자리까지 표시한 원주율표

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679

모두 보려면 보이기를 클릭하세요
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 77774 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744 94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702 89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024 74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992 45863 15030 28618 29745 55706 74983 85054 94588 58692 69956 90927 21079 75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356 63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 81647 06001 61452 49192 17321 72147 72350 14144 19735 68548 16136 11573 52552 13347 57418 49468 43852 33239 07394 14333 45477 62416 86251 89835 69485 56209 92192 22184 27255 02542 56887 67179 04946 01653 46680 49886 27232 79178 60857 84383 82796 79766 81454 10095 38837 86360 95068 00642 25125 20511 73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 06744 27862 20391 94945 04712 37137 86960 95636 43719 17287 46776 46575 73962 41389 08658 32645 89581 33904 78027 59009 94657 64078 95126 94683 98352 59570 98258 22620 52248 94077 26719 47826 84826 01476 99090 26401 36394 43745 53050 68203 49625 24517 49399 65143 14298 09190 65925 09372 21696 46151 57098 58387 41059 78859 59772 97549 89301 61753 92846 81382 68683 86894 27741 55991 85592 52459 53959 43104 99725 24680 84598 72736 44695 84865 38367 36222 62609 91246 08051 24388 43904 51244 13654 97627 80797 71569 14359 97700 12961 60894 41694 86855 58484 06353 42207 22258 28488 64815 84560 28506 01684 27394 52267 46767 88952 52138 52254 99546 66727 82398 64565 96116 35488 62305 77456 49803 55936 34568 17432 41125 15076 06947 94510 96596 09402 52288 79710 89314 56691 36867 22874 89405 60101 50330 86179 28680 92087 47609 17824 93858 90097 14909 67598 52613 65549 78189 31297 84821 68299 89487 22658 80485 75640 14270 47755 51323 79641 45152 37462 34364 54285 84447 95265 86782 10511 41354 73573 95231 13427 16610 21359 69536 23544 29524 84937 18711 01457 65403 59027 99344 03742 00731 05785 39062 19838 74478 08478 48968 33214 45713 86875 19435 06430 21845 31910 48481 00537 06146 80674 91927 81911 97939 95206 14196 63428 75444 06437 45123 71819 21799 98391 01591 95618 14675 14269 12397 48940 90718 64942 31961 56794 52080 95146 55022 52316 03881 93014 20937 62137 85595 66389 37787 08303 90697 92077 34672 21825 62599 66150 14215 23068 03844 77345 49202 60541 46659 25201 49744 28507 32518 66600 21324 34088 19071 04863 31734 64965 14539 05796 26856 10055 08106 65879 69981 63574 73638 40525 71459 10289 70641 56377 97120 62804 39039 75951 56771 57700 42033 78699 36007 23055 87631 76359 42187 31251 47120 53292 81918 26186 12586 73215 79198 41484 88291 64470 60957 52706 95722 09175 67116 72291 09816 90915 28017 35067 12748 58322 28718 35209 35396 57251 21083 57915 13698 82091 44421 00675 10334 67110 31412 67111 36990 86585 16398 31501 97016 51511 68517 14376 57618 35155 65088 49099 89859 98238 73455 28331 63550 76479 18535 89322 61854 89632 13293 30898 57064 20467 52590 70915 48141 65498 59461 63718 02709 81994 30992 44889 57571 28289 05923 23326 09729 97120 84433 57326 54893 82391 19325 97463 66730 58360 41428 13883 03203 82490 37589 85243 74417 02913 27656 18093 77344 40307 07469 21120 19130 20330 38019 76211 01100 44929 32151 60842 44485 96376 69838 95228 68478 31235 52658 21314 49576 85726 24334 41893 03968 64262 43410 77322 69780 28073 18915 44110 10446 82325 27162 01052 65227 21116 60396 66557 30925 47110 55785 37634 66820 65310 98965 26918 62056 47693 12570 58635 66201 85581 00729 36065 98764 86117 91045 33488 50346 11365 76867 53249 44166 80396 26579 78771 85560 84552 96541 26654 08530 61434 44318 58676 97514 56614 06800 70023 78776 59134 40171 27494 70420 56223 05389 94561 31407 11270 00407 85473 32699 39081 45466 46458 80797 27082 66830 63432 85878 56983 05235 80893 30657 57406 79545 71637 75254 20211 49557 61581 40025 01262 28594 13021 64715 50979 25923 09907 96547 37612 55176 56751 35751 78296 66454 77917 45011 29961 48903 04639 94713 29621 07340 43751 89573 59614 58901 93897 13111 79042 97828 56475 03203 19869 15140 28708 08599 04801 09412 14722 13179 47647 77262 24142 54854 54033 21571 85306 14228 81375 85043 06332 17518 29798 66223 71721 59160 77166 92547 48738 98665 49494 50114 65406 28433 66393 79003 97692 65672 14638 53067 36096 57120 91807 63832 71664 16274 88880 07869 25602 90228 47210 40317 21186 08204 19000 42296 61711 96377 92133 75751 14959 50156 60496 31862 94726 54736 42523 08177 03675 15906 73502 35072 83540 56704 03867 43513 62222 47715 89150 49530 98444 89333 09634 08780 76932 59939 78054 19341 44737 74418 42631 29860 80998 88687 41326 04721 56951 62396 58645 73021 63159 81931 95167 35381 29741 67729 47867 24229 24654 36680 09806 76928 23828 06899 64004 82435 40370 14163 14965 89794 09243 23789 69070 69779 42236 25082 21688 95738 37986 23001 59377 64716 51228 93578 60158 81617 55782 97352 33446 04281 51262 72037 34314 65319 77774 16031 99066 55418 76397 92933 44195 21541 34189 94854 44734 56738 31624 99341 91318 14809 27777 10386 38773 43177 20754 56545 32207 77092 12019 05166 09628 04909 26360 19759 88281 61332 31666 36528 61932 66863 36062 73567 63035 44776 28035 04507 77235 54710 58595 48702 79081 43562 40145 17180 62464 36267 94561 27531 81340 78330 33625 42327 83944 97538 24372 05835 31147 71199 26063 81334 67768 79695 97030 98339 13077 10987 04085 91337 46414 42822 77263 46594 70474 58784 77872 01927 71528 07317 67907 70715 72134 44730 60570 07334 92436 93113 83504 93163 12840 42512 19256 51798 06941 13528 01314 70130 47816 43788 51852 90928 54520 11658 39341 96562 13491 43415 95625 86586 55705 52690 49652 09858 03385 07224 26482 93972 85847 83163 05777 75606 88876 44624 82468 57926 03953 52773 48030 48029 00587 60758 25104 74709 16439 61362 67604 49256 27420 42083 20856 61190 62545 43372 13153 59584 50687 72460 29016 18766 79524 06163 42522 57719 54291 62991 93064 55377 99140 37340 43287 52628 88963 99587 94757 29174 64263 57455 25407 90914 51357 11136 94109 11939 32519 10760 20825 20261 87985 31887 70584 29725 91677 81314 96990 09019 21169 71737 27847 68472 68608 49003 37702 42429 16513 00500 51683 23364 35038 95170 29893 92233 45172 20138 12806 96501 17844 08745 19601 21228 59937 16231 30171 14448 46409 03890 64495 44400 61986 90754 85160 26327 50529 83491 87407 86680 88183 38510 22833 45085 04860 82503 93021 33219 71551 84306 35455 00766 82829 49304 13776 55279 39751 75461 39539 84683 39363 83047 46119 96653 85815 38420 56853 38621 86725 23340 28308 71123 28278 92125 07712 62946 32295 63989 89893 58211 67456 27010 21835 64622 01349 67151 88190 97303 81198 00497 34072 39610 36854 06643 19395 09790 19069 96395 52453 00545 05806 85501 95673 02292 19139 33918 56803 44903 98205 95510 02263 53536 19204 19947 45538 59381 02343 95544 95977 83779 02374 21617 27111 72364 34354 39478 22181 85286 24085 14006 66044 33258 88569 86705 43154 70696 57474 58550 33232 33421 07301 54594 05165 53790 68662 73337 99585 11562 57843 22988 27372 31989 87571 41595 78111 96358 33005 94087 30681 21602 87649 62867 44604 77464 91599 50549 73742 56269 01049 03778 19868 35938 14657 41268 04925 64879 85561 45372 34786 73303 90468 83834 36346 55379 49864 19270 56387 29317 48723 32083 76011 23029 91136 79386 27089 43879 93620 16295 15413 37142 48928 30722 01269 01475 46684 76535 76164 77379 46752 00490 75715 55278 19653 62132 39264 06160 13635 81559 07422 02020 31872 77605 27721 90055 61484 25551 87925 30343 51398 44253 22341 57623 36106 42506 39049 75008 65627 10953 59194 65897 51413 10348 22769 30624 74353 63256 91607 81547 81811 52843 66795 70611 08615 33150 44521 27473 92454 49454 23682 88606 13408 41486 37767 00961 20715 12491 40430 27253 86076 48236 34143 34623 51897 57664 52164 13767 96903 14950 19108 57598 44239 19862 91642 19399 49072 36234 64684 41173 94032 65918 40443 78051 33389 45257 42399 50829 65912 28508 55582 15725 03107 12570 12668 30240 29295 25220 11872 67675 62204 15420 51618 41634 84756 51699 98116 14101 00299 60783 86909 29160 30288 40026 91041 40792 88621 50784 24516 70908 70006 99282 12066 04183 71806 53556 72525 32567 53286 12910 42487 76182 58297 65157 95984 70356 22262 93486 00341 58722 98053 49896 50226 29174 87882 02734 20922 22453 39856 26476 69149 05562 84250 39127 57710 28402 79980 66365 82548 89264 88025 45661 01729 67026 64076 55904 29099 45681 50652 65305 37182 94127 03369 31378 51786 09040 70866 71149 65583 43434 76933 85781 71138 64558 73678 12301 45876 87126 60348 91390 95620 09939 36103 10291 61615 28813 84379 09904 23174 73363 94804 57593 14931 40529 76347 57481 19356 70911 01377 51721 00803 15590 24853 09066 92037 67192 20332 29094 33467 68514 22144 77379 39375 17034 43661 99104 03375 11173 54719 18550 46449 02636 55128 16228 82446 25759 16333 03910 72253 83742 18214 08835 08657 39177 15096 82887 47826 56995 99574 49066 17583 44137 52239 70968 34080 05355 98491 75417 38188 39994 46974 86762 65516 58276 58483 58845 31427 75687 90029 09517 02835 29716 34456 21296 40435 23117 60066 51012 41200 65975 58512 76178 58382 92041 97484 42360 80071 93045 76189 32349 22927 96501 98751 87212 72675 07981 25547 09589 04556 35792 12210 33346 69749 92356 30254 94780 24901 14195 21238 28153 09114 07907 38602 51522 74299 58180 72471 62591 66854 51333 12394 80494 70791 19153 26734 30282 44186 04142 63639 54800 04480 02670 49624 82017 92896 47669 75831 83271 31425 17029 69234 88962 76684 40323 26092 75249 60357 99646 92565 04936 81836 09003 23809 29345 95889 70695 36534 94060 34021 66544 37558 90045 63288 22505 45255 64056 44824 65151 87547 11962 18443 96582 53375 43885 69094 11303 15095 26179 37800 29741 20766 51479 39425 90298 96959 46995 56576 12186 56196 73378 62362 56125 21632 08628 69222 10327 48892 18654 36480 22967 80705 76561 51446 32046 92790 68212 07388 37781 42335 62823 60896 32080 68222 46801 22482 61177 18589 63814 09183 90367 36722 20888 32151 37556 00372 79839 40041 52970 02878 30766 70944 47456 01345 56417 25437 09069 79396 12257 14298 94671 54357 84687 88614 44581 23145 93571 98492 25284 71605 04922 12424 70141 21478 05734 55105 00801 90869 96033 02763 47870 81081 75450 11930 71412 23390 86639 38339 52942 57869 05076 43100 63835 19834 38934 15961 31854 34754 64955 69781 03829 30971 64651 43840 70070 73604 11237 35998 43452 25161 05070 27056 23526 60127 64848 30840 76118 30130 52793 20542 74628 65403 60367 45328 65105 70658 74882 25698 15793 67897 66974 22057 50596 83440 86973 50201 41020 67235 85020 07245 22563 26513 41055 92401 90274 21624 84391 40359 98953 53945 90944 07046 91209 14093 87001 26456 00162 37428 80210 92764 57931 06579 22955 24988 72758 46101 26483 69998 92256 95968 81592 05600 10165 52563 75678


한편, 원주율은 계수가 유리수인 유한 차수 다항식의 해가 될 수 없다. 이러한 종류의 수를 초월수라 부른다. 이 사실은 1882년 페르디난트 폰 린데만이 증명하였다. 여기에서 원주율은 어떤 정수에 적당한 유리수를 곱하고 제곱근을 씌우는 등의 연산을 조합하여 얻어낼 수 없다는 사실을 알 수 있다. 또한 원주율이 초월수라는 사실을 통해, 그리스 3대 난제 중 하나였던 “컴퍼스만을 사용하여 과 넓이가 같은 정사각형작도하는 원적문제”가 유한한 대수적 방법으로는 불가능하다는 것을 증명할 수 있다.

유클리드 기하학에서 원과 원주율의 관계를 살펴보면 다음과 같은 사실을 확인할 수 있다.[9]

  • 원의 둘레를 구하는 식은 원주율의 정의에 의한 것이므로 자명하다.
원의 둘레 = 지름 × 원주율
  • 원의 넓이를 구하는 방법은 아르키메데스 시대 이후 여러 가지 기법이 알려져 있다. 널리 사용하는 방법 가운데 하나는 레오나르도 다빈치가 고안한 것으로, 정육각형을 이용한 구적법이다. 레오나르도 다빈치는 왼쪽 그림과 같이 정육각형을 이용하여 분할한 원을 직사각형으로 치환하여 원의 넓이를 계산하였다.[10]
원의 넓이 = 원주율 × 반지름2

원주율이 보이는 복잡한 수열에 비해 이를 계산하는 방법은 의외로 단순하다. 라이프니츠가 정리한 다음 계산식이 널리 알려져 있다.

역사[편집]

고대의 여러 문화에서 원주율의 값으로 3이 쓰였다. 고대 메소포타미아에서도 원주율을 3으로 계산하였고[11], 구약성경 열왕기상 7장 23절과 역대하 4장 2절에는 직경과 둘레의 길이를 기술하여 원주율이 3정도 임을 알고 있었다고 추측된다. 고대 중국의 수학책인 《구장산술》에서도 3을 원주율로 제시하였다. 《구장산술》에는 다음과 같은 문제가 실려 있다.[12]

원문 번역
今有圓田周三十步經十步問爲田幾何
答曰七十五步
둘레가 30걸음, 지름이 10걸음인 원 모양의 밭이 있다면 넓이는 얼마인가?
답: 75걸음²
원주율의 근삿값을 3.14로 할 때 오늘날의 계산은
원에 내접하는 정육각형

구장산술에 실린 계산이 매우 부정확하다는 것은 왼쪽 그림을 보면 쉽게 알 수 있다. 지름이 1인 원에 내접하는 정육각형의 둘레는 3이고 실제 원의 둘레는 그것과는 차이가 상당하기 때문이다.[13] 이는 고대에서부터 이미 널리 알려진 문제였고 값을 보다 정확하게 구하기 위한 노력이 계속되었다. 고대 이집트에서는 원통형 바퀴를 굴려 직접 측정해 원주율을 계산하였는데 25681=3.16049……를 사용하였다.[11]

원에 외접하는 다각형과 내접하는 다각형의 둘레를 이용한 아르키메데스의 원주율 계산

한편 기원전 3세기의 고대 그리스 수학자 아르키메데스는 근대 적분이 없었던 당시에 무한소라는 개념을 사용하였다. 그는 소거법을 사용하여 근삿값을 계산하였다. 이 방법은 임의 차원의 미지항에 대해 극한을 취하는 것으로, 귀류법을 사용하여 동일한 계산을 반복하는 과정을 통해 해답을 얻는 것이다. 아르키메데스는 변이 매우 많은 다각형이 임의의 에 내접하는 경우와 외접하는 경우를 비교하여 원주율을 계산하였다. 즉, 임의의 원의 둘레는 그것에 외접하는 다각형의 둘레보다 짧고 내접하는 다각형보다 길다. 이때 다각형의 변이 많아질수록 외접하는 경우와 내접하는 경우의 둘레 차는 작아지므로 원의 둘레에 근사한다. 즉, 지름이 d인 원에 내접하는 변의 개수가 n인 정다각형의 둘레 Pn에 대해 다음과 같이 함수의 극한을 취하면 원주율을 얻을 수 있다.

아르키메데스는 정구십육각형을 이용하여 의 값을 다음과 같이 계산하였다.[14]

아르키메데스는 이 결과에 따라 의 근삿값으로 3.1416을 제시하였다. 또한, 아르키메데스는 원의 면적이 임을 증명하였다. 아르키메데스는 자신의 저서 《구와 원기둥》에서 어떠한 크기가 주어지더라도 임의의 크기에 적당한 수를 곱하여 주어진 크기를 초과할 수 있다고 가정하였다. 이를 실수에서의 아르키메데스 성질이라고 한다.[15]

중국의 삼국시대 위나라 수학자 유휘는 《구장산술》에 주해를 달아 다시 출판하였는데, 아르키메데스와 같은 방법을 사용하여 원주율을 15750=3.14 로 계산하였다. 유휘가 계산한 원주율 근삿값은 오늘날에도 일상생활에서 사용한다.[16]

2세기에 들어 중국의 장형은 원주율을 3.1623으로 계산하였고[17] 5세기 중국 남북조 시대 송나라조충지는 3.141592로 계산하였다.[18] 독일에서는 1600년대 뤼돌프 판 쾰런이 소수점 이하 35자리까지 계산하였다.[3] 그 후 많은 계산이 나왔는데, 1949년 9월 최초로 컴퓨터를 이용하여 70시간에 걸쳐 소수점 아래 2037자리까지 계산하였다. 2005년 일본 도쿄 대학의 가네다 야스마사 교수는 컴퓨터를 601시간 56분 동안 사용하여 원주율을 소수점 1,241,100,000,000자리까지 구하였다. 2009년 〈도쿄신문〉에 따르면, 일본 쓰쿠바(筑波) 대학 계산과학연구센터는 17일, 슈퍼컴퓨터를 사용한 원주율 계산에서, 2조 5769억 8037만 자리수의 세계기록을 수립했다고 한다. (73시간 59분 소요)[19][20] 그 이후 프랑스에서는 2조 7천억 자리까지 계산하였다.[21] 2010년 8월 3일에는 일본의 한 회사원이 소수점 이하 5조 자리까지 계산하였다. (90일 7시간 소요, 검증 기간 포함 / PC 사용)[22]

컴퓨터를 도입하기 이전에 가장 긴 자리수의 원주율을 계산한 사람은 영국의 수학자 샹크스였다. 그는 15년이나 걸려 1873년께 소수점 이하 707자리까지 원주율 값을 계산해냈다. 하지만 후에 그 계산은 528자리까지만 정확한 것으로 밝혀졌다.[23] 원주율 계산에 컴퓨터를 도입한 이후 원주율 계산은 단순 알고리즘의 무한 반복에 불과한 작업이 되어 수학적 의미를 잃었다.[24] 이 계산은 종종 컴퓨터의 성능을 시험하기 위한 방법으로 사용한다.[23]

수학적 특성[편집]

원주율은 두 정수의 비로 나타낼 수 없는 무리수이다. 또한, 계수유리수다항식이 될 수 없는 초월수이다.

무리수[편집]

원주율이 무리수라는 것은 1761년에 요한 하인리히 람베르트가 증명했다.[25] 람베르트는 다음과 같이 탄젠트 함수의 연분수 전개식을 이용하여 이를 증명하였다.[26]

x가 0 이 아닌 유리수일 때 위에 전개된 연분수를 십진기수법으로 나타내면 언제나 순환하지 않는 소수이므로 항상 무리수이다. 한편, tan(π4)=1 이므로 π4는 반드시 무리수여만 한다. 따라서 π 역시 무리수이다.[27][주해 1]

초월수[편집]

오일러 등식은 기초 수학의 여러 개념에서 빈번하게 등장한다.

원주율이 초월수임은 오일러 등식을 이용하여 다음과 같이 증명할 수 있다.[28] 오일러 등식은,

…… (1)[주해 2]

이다. 이 때 π가 정계수 대수방정식 의 근이라면 이다. 따라서 역시 성립하여야 한다. 이제 y=iπ라 하면 π=-iy 이고 -π=iy 이므로, iπ는 다음 식으로 나타낼 수 있는 정계수 대수방정식을 만족시켜야 한다.

이제 을 ν차원의 방정식이라 하면 그 인 y1, y2,……, yν에는 iπ가 존재하여야 하므로, 식 (1)에 따라 다음과 같이 나타낼 수 있다.

그런데 이러한 관계를 만족하는 대수방정식의 근이 유리수라고 가정하면 무한히 약분할 수 있어서, 이를 기약분수로 표현할 수 없는 모순이 생긴다.[주해 3] 유리수를 기약분수로 표현할 수 없다는 것은 유리수의 정의에 어긋나므로 π가 정계수 대수방정식 의 근이라는 최초의 가정이 잘못되었다고 볼 수밖에 없다. 즉, 원주율은 초월수이다. 자세한 증명은 링크한 주석을 참고하기 바란다.[29]

수열[편집]

개요에서 밝혔듯이 원주율은 반복되지 않고 무한히 계속되는 수열을 이룬다. 네덜란드 수학자 라위트전 브라우어르는 다음과 같은 질문을 제기하였다.[30]

  • 원주율 π = 3.141592…… 의 전개에서 계속되는 소수의 수열에 9가 연속적으로 100회 나타날까?

브라우어르는 이 수열이 무한히 계속되기 때문에 이 수열을 어느 정도까지만 확인한 결과만으로는 위 질문에 답할 수 없다는 점을 지적하였다. 실제 소수점 이하 762번째에서부터 수열 999999 가 출현한다. 이 수열은 파인만 포인트로 알려져 있으며 원주율의 소수점 이하 수열에서 확률 0.08%로 발견할 수 있는 것으로 알려져 있다.[31] 따라서 경험적 방법으로는 위 문제에 답할 수 없다. 브라우어르는 이러한 논의를 바탕으로 아리스토텔레스의 배중률[주해 4] 은 유한한 개수를 대상으로 한 것에만 적용 수 있을 뿐 무한한 것에 적용할 수 없다고 결론지었다.[30]

원주율에서 나타나는 수열은 무작위 표집을 사용해 만든 난수표의 성질을 보인다. 하지만, 실제 원주율의 수열이 완전한 무작위성을 보이는지는 증명되지 않았다.[7]

계산식[편집]

원주율은 무리수이기 때문에 그 값은 근삿값으로밖에 알 수 없다. 대부분의 계산에는 3.14나 22/7 라는 근삿값을 사용해도 충분하다. 355/113은 외우기 좋고, 정밀도도 좋다. 좀 더 정밀한 기술의 계산에서는 3.1416 또는 3.14159 등을 사용하기도 한다. 기상 예보나 인공 위성 등의 계산에는 소수점 아래 30자리까지 나아간 근삿값을 사용하고 있다. 이렇게 불규칙적인 패턴을 가지는 원주율은 다음과 같이 규칙적인 수식을 이용하여 계산할 수 있다. 더 정확한 값을 얻으려면 수식을 연장하기만 하면 된다.[24]

위 식은 고트프리트 빌헬름 라이프니츠가 전개한 것으로 흔히 라이프니츠의 공식이라고 부른다. 이 식 외에도 원주율을 계산하는 공식으로는 다음과 같은 것이 있다.[32]

…… 월리스 공식 1655년
……오일러의 식 1735년[주해 5]

17세기의 프랑스 수학자 프랑수아 비에트는 다음과 같은 무한급수로 원주율을 계산하였다.[33]

또한, 스털링 근사를 사용해 원주율을 유도할 수도 있다.[34]

원주율은 다음과 같이 연분수로 표현할 수 있다.[35]

1996년 데이빗 베일리는 피터 보어와인, 시몽 플루프와 공동으로 π에 관련된 새로운 무한급수를 발견했다.

이 식을 이용하면 2진수 그리고 16진수로 표기한 π값의 소수점 아래 n자리 값을 n-1째 자리까지 구하지 않고 바로 계산해 낼 수 있다. 베일리의 홈페이지 에선 다양한 프로그래밍 언어를 이용해 구현한 실제 예를 볼 수 있다.

적용[편집]

원주율은 수학물리학 등 여러 분야에서 다양하게 적용한다.

기하학[편집]

아르키메데스의 다음과 같은 성질을 증명하였다.[36]

  • 반지름 r 인 원의 둘레
  • 반지름 r 인 원의 넓이
  • 반지름 r 인 구의 부피
  • 반지름 r 인 구의 겉넓이

한편, 원은 이심률이 0인 타원으로 간주할 수 있으며 이에 따라 타원 방정식은 일반적으로 다음과 같이 표현한다.[37]

이 때 타원의 넓이를 A라 하면 다음과 같이 계산할 수 있다.

라디안의 정의

각의 크기를 나타내는 무차원 단위인 라디안은 오른쪽 그림과 같이 정의하여 반지름과 의 길이가 같을 때 1라디안이 된다. 따라서, 원 전체는 2π라디안이고 이를 로 환산하면 다음과 같다.[38]

바젤 문제[편집]

1687년 스위스바젤의 수학 교수였던 야코프 베르누이요한 베르누이 형제는 조화급수발산한다는 사실을 증명하였다. 그러나, 조화급수의 각 분모를 제곱한 다음 식을 닫힌 형식으로 나타내는 것에는 실패하였으며 논문의 끝에 이 문제를 해결하였다면 알려주기 바란다고 적었다.

당대의 유명한 수학자들이 이 문제를 풀기 위해 시도하였으나 결국 실패하였고, 이 문제는 바젤 문제로 알려지며 해석학자의 악몽으로까지 불리게 되었다. 이를 해결한 사람은 레온하르트 오일러로 1735년에 이 급수의 값이 다음과 같다는 것을 증명하였다.

후일 이 급수는 다음과 같은 일반식으로 표현되었는데 이것이 리만 제타 함수이다.[39]

리만 제타 함수는 s가 짝수일 때 위 식을 이용하여 그 값을 쉽게 계산할 수 있으나 홀수일 때는 자명하지 않다. 1978년 s가 3일 때 무리수로 수렴하는 것이 증명되었다. 이 수렴값은 아페리 상수라고 한다.[40]

복소수 계산[편집]

복소평면에 그린 오일러의 공식. 각 φπ 라디안(180°)으로 증가하는 동안 오일러 등식이 성립함을 보인다.

복소수 극좌표계를 이용하여 다음과 같이 나타낼 수 있다.[41]

복소해석학에서 π는 복소수 변수가 지수 함수에서 보이는 행동과 연관이 있으며 오일러의 공식에 따라 다음과 같이 표현할 수 있다.

i허수 단위이기 때문에 i2 = −1 이므로 이를 π라디안(=180°)과 함께 자연로그의 밑 e의 지수로 표현하면 다음과 같은 오일러 등식을 얻는다.

따라서 n 번째 단위근은 다음과 같다.

이제 가우스 적분으로 나타내면,

이 결과는 반정수감마 함수가 √π의 유리수 곱임을 뜻한다.

확률과 통계[편집]

확률 밀도 함수 f(x; x_0, γ )에 대한 코시 분포

확률통계에서 원주율이 등장하는 정리들은 다음과 같은 것들이 있다.

이 된다.[42]

참고로, 모든 확률 밀도 함수는 다음과 같이 적분한다.[44]

조르주루이 르클레르 드 뷔퐁이 제기한 뷔퐁의 바늘 문제는 원주율의 근삿값을 구하는 경험주의적인 방법으로 거론된다. 길이가 L인 바늘을 일정 간격으로 그린 평행선에 떨어뜨린다고 가정해 보자. 이 때 평행선의 간격 S가 바늘의 길이보다 크다고 하면, 바늘을 떨어뜨린 횟수 n번에 대해 바늘이 평행선 밖으로 나간 횟수 x번(단, x>0)에는 몬테카를로 방법에 의해 다음과 같은 관계가 있다.[45]

즉, 뷔퐁의 바늘 문제에서 바늘을 떨어뜨리는 횟수가 매우 많아지면 바늘이 평행선을 벗어나는 횟수에 대한 바늘을 떨어뜨린 전체 횟수의 비는 원주율에 근사한다.

물리학[편집]

회전하는 물체에는 각속도가 있다

원주율 자체는 물리 상수가 아니지만 물리학의 여러 분야에서 두루 사용한다. 이는 자연 현상의 상당수가 과 관계가 있기 때문이다. 예를 들어 회전수를 일정하게 유지하는 등속원운동에서 각속도원주속도는 다음과 같이 계산할 수 있다.[46]

각속도를 ω (= θ / 초), 분당 회전수를 N이라 하면
이때, 반지름을 r이라 하면 원주속도 v는

이 외에 물리학에서 원주율을 사용하는 경우는 다음과 같다.

  • 불확정성 원리에 따라, 양자 역학적인 물리량은 동시에 정확히 관찰할 수 없다. 예를 들어 입자의 특정 위치를 Δ x라 하고 이 때의 운동량을 Δ p 라 하면, 이 둘의 크기를 둘 다 정확히 관찰할 수는 없으며 다음 식을 사용해 확률적으로만 계산한다.[47]
여기서 리치 곡률, 스칼라 곡률, 계량 텐서, 우주 상수, 중력 상수, 광속, 그리고 에너지-운동량 텐서이다.

같이 보기[편집]

주해[편집]

  1. π4라디안 값으로 로 나타내면 45°이다. 한편 탄젠트 함수의 값은 0일 때 0이 되며 π2, 즉 90°일 때 무한이 된다.
  2. 이와 방식이 같은 증명 가운데 가 무리수임을 증명한 에우클레이데스의 증명이 널리 알려져 있다.
  3. 배중률은 논리학의 기본 공리 가운데 하나로서 A이면서 동시에 A가 아닌 경우는 없다는 것이다. 불 대수로 표현하면
  4. 이 식은 바젤 문제의 해답으로 후일 리만 제타 함수로 일반화되었을 때 에 해당하는 급수이다.

참고[편집]

  1. 송은영, 재미있는 수학상식, 맑은창, 2007, ISBN 89-86607-59-X, 126-133 쪽
  2. Pickover, Clifford A. (2005). A passion for mathematics: numbers, puzzles, madness, religion, and the quest for reality. John Wiley and Sons. p. 52. ISBN 0-471-69098-8., Extract of page 52
  3. 파이(π) 본격 연구는 아르키메데스부터, 사이언스타임즈, 2010년 1월 20일
  4. "About Pi". Ask Dr. Math FAQ. Retrieved 2007-10-29.
  5. 셔먼 스타인, 이우영 역, 아르키메데스, 경문사, 2006, 170쪽, ISBN 89-7282-926-9
  6. Smith, David Eugene. A source book in mathematics, Volume I, pp. 346-347.
  7. Pi Seems A Good Random Number Generator But Not Always The Best, Science daily, 2005-4-25
  8. 소수점 이하 1만 자리까지 표시한 원주율표
  9. Rudin, Walter (1976) [1953]. Principles of Mathematical Analysis (3e ed.). McGraw-Hill. p. 183. ISBN 0-07-054235-X.
  10. Beckmann, Petr (1976), A History of Pi, St. Martin's Griffin, ISBN 978-0-312-38185-1
  11. 김흥식, 세상의 모든지식, 서해문집, 2007, ISBN 89-7483-317-4 545-546쪽
  12. 과학동아 2006년 7월호, 원주율 π의 수수께끼
  13. 장혜원, 청소년을 위한 동양수학사, 두리미디어, 2006, ISBN 89-7715-160-0, 71쪽
  14. 나숙자, 친절한 도형 교과서, 부키, 2007, ISBN 89-6051-016-5, 243쪽
  15. Kaye, R.W.. "Archimedean ordered fields". web.mat.bham.ac.uk. Retrieved 2009-11-07.
  16. 장혜원, 청소년을 위한 동양수학사, 두리미디어, 2006, ISBN 89-7715-160-0, 70-73쪽
  17. 위안싱페이, 장연 역, 중국문명대시야 1, 김영사, 2007, ISBN 89-349-2736-4, 465쪽
  18. 중국사학회, 강영매 역, 중국역사박물관 4, 범우사, 2004년, ISBN 89-08-04302-0, 76쪽
  19. 쓰쿠바 대학 세셰신기록, 원주율 자리수 계산, JPNews, 2009-8-18
  20. 円周率の計算けた数で世界記録を樹立, 쓰쿠바 대학(筑波大学)홈페이지 (일본어)
  21. 파이(π), 2조7천억 자리까지 계산, 사이언스타임즈, 2010-1-19
  22. 日회사원, 원주율 소수점 이하 5조자리까지 계산 성공 :: 네이버 뉴스
  23. 첨단과학과 원주율, 국민일보, 2005-7-11
  24. 사이먼 싱, 박병철 역, 페르마의 마지막 정리, 영림카디널, 2002, ISBN 89-85055-97-6 74-75쪽
  25. 김흥식, 세상의 모든지식, 서해문집, 2007, ISBN 89-7483-317-4 547쪽
  26. Laczkovich, Miklós (1997), "On Lambert's proof of the irrationality of π", American Mathematical Monthly 104 (5): 439–443, ISSN 0002-9890
  27. Zhou, Li; Markov, Lubomir (2010), "Recurrent Proofs of the Irrationality of Certain Trigonometric Values", American Mathematical Monthly 117 (4): 360–362
  28. 김태성, e 및 π의 초월성과 고등학교에서 초월수 지도, 한국수학교육학회 A 통권 14권 2호, 1976년, 17-22
  29. Hilberts Beweis der Transzendenz der Ludolphschen Zahl π(독일어)
  30. 장우석, 수학 철학에 미치다, 숨비소리, 2008년, ISBN 89-93265-01-1, 174-178쪽
  31. Arndt, J. & Haenel, C. (2001), Pi — Unleashed, Berlin: Springer, p. 3, ISBN 3-540-66572-2.
  32. 나카다 노리오, 황소연 역, 피라미드에서 수학을 배우자 (수학의 도레미 3), 이지북, 2001년, ISBN 89-89422-62-0, 160-161쪽
  33. Pierre Eymard,Jean Pierre Lafon, The number π, 45p.
  34. Lennart Berggren,Jonathan M. Borwein,Peter B. Borwein, Pi, a source book
  35. Lange, L. J. (May 1999). "An Elegant Continued Fraction for π". The American Mathematical Monthly 106 (5): 456–458. doi:10.2307/2589152
  36. 셔먼 스타인, 이우영 역, 아르키메데스, 경문사, 2006, ISBN 89-7282-926-9, 145-168쪽
  37. 박은순, 미분 적분학, 숭실대학교출판부, 2009년, ISBN 89-7450-235-6, 70쪽
  38. 박은순, 미분 적분학, 숭실대학교출판부, 2009년, ISBN 89-7450-235-6, 119쪽
  39. 존 더비셔, 박병철 역, 《리만 가설》, 승산, ISBN 978-89-88907-88-7, 99-122쪽
  40. Proving A Proof Is A Proof « Gödel’s Lost Letter and P=NP
  41. Smith, Julius O.. "Euler's Identity", Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing. 0-9745607-0-7. 2011년 2월 5일에 확인.
  42. Gaussian Integral, MathWorld, 2004-10-07 확인
  43. Cauchy Distribution, MathWorld, 2007-11-08 확인
  44. Probability Function, MathWorld, 2007-11-08 확인함
  45. Weisstein, Eric W (2005-12-12). "Buffon's Needle Problem". MathWorld. Retrieved 2007-11-10.
  46. 문성수, 정설 재료역학, 기전연구사, 2000년, ISBN 89-336-0539-8, 52-53쪽
  47. 존 테일러, 강희재 외 역, 현대물리학, 교보문고, 2005, ISBN 89-7085-543-2, 242-244쪽
  48. Einstein, Albert (1916). "The Foundation of the General Theory of Relativity" (PDF). Annalen der Physik.

바깥 고리[편집]