수학

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기

수학(數學, 영어: Mathematics)은 , 구조, 공간, 변화등을 다룬다고 설명 할 수 있으나 일반적으로 받아들여지는 정의는 없다[1] 수학은 공리, 명제, 증명 등으로 구성된 추상적 대상을 연구하는 학문이다. 수학자는 인간이 살아가는 실제 세상과 대비해 보았을 때 전혀 다른 독립적이며 추상적이고 엄격한 구조를 만들고 연구한다.

그러나 이런 추상적인 사실들이 가끔은 실제를 설명하는데 필요한 경우도 있다. 고대로부터 문명이 생기는데 필요한 건축, 천문학, 토지 측량, 기계 공학, 상업 등에 수학적 개념들이 응용되어왔다.

수학에서는 예술에서 그렇듯 실용적 고려를 하지 않으며, 거의 모두 실용성을 가지지 않지만, 극히 일부 실용적인 부분도 있다. 응용 수학에서는 이렇게 수학을 물리학, 화학, 생물학, 공학, 경제학, 사회학 등 다른 학문에 응용하는데 관심이 있다.

또한 수학은 음악이나 미술등 예술과도 관련이 있다. 피타고라스는 두 정수의 비율이 듣기 좋은 소리가 난다는 점을 가지고 피타고라스 음계를 만들었다. 중세시대에도 음악과 수학을 밀접하게 연관시켰으며 성 빅토르의 후고는 “음악은 조화다”라고 했고, 성 트론드의 루돌프는 “음악은 조화의 토대(ratio)다”라고 쓴 바 있다. 조화가 반드시 소리로 표현될 필요는 없고 소리의 음악은 음악의 형식 중 하나에 불과했다. 소리에 대해 다루었던 중세의 저술가들이 있는가 하면, 조화와 비례의 추상적 이론만을 다루고 소리에는 거의 관심을 보이지 않았던 저술가들도 있었다. 청각적인 면과 추상적인 면이라는 음악의 이런 이중적 측면은 고대의 음악이론보다는 중세의 음악이론에서 큰 특징이 되었다.[2] 또한 현대 음악군(群,group)같은 수학적 대상을 이용해 분석하기도 한다. 원근법사영 기하학에 해당한다. 미술 사조 중 하나인 입체파도 기하학의 영향을 받았다.

오늘날 수학은 자연과학, 공학뿐만 아니라, 경제학 등의 사회과학에서도 중요한 도구로 사용된다. 예를들어, 정도의 차이는 있으나, 미적분학선형대수학자연과학공학, 경제학을 하는데에 필수적 과목으로 여겨지며, 확률론계량경제학에 응용된다. 통계학사회과학이론에 근거를 마련하는데 필수적이다. 16세기에 갈릴레오 갈릴레이가 "자연이라는 책은 수학이라는 언어로 기록되어 있다."는 주장과 함께 물리학에 수학적 방법을 도입하였고, 17세기에 아이작 뉴턴고전 역학의 기본 물리학 법칙들을 수학적으로 기술하고 정립하여 물리학 이론에서 수학적 모델링은 필수적 요소가 되었다. 또한 이 시기는 과학적 방법이 정립되는 시기이기도 한데, 많은 과학적 현상들이 수학적 관계가 있음이 드러나면서 과학적 방법에도 수학은 중요한 역할을 하고 있다. 노벨 물리학상 수상자 유진 위그너는 그의 에세이 "The unreasonable effectiveness of mathematics in natural sciences"[3]에서 인간 세상과 동떨어져있고 현실과 아무 관련이 없다고 여겨지던 수학 중 극히 일부는 뜻밖에도 자연과학과 연관성이 드러나고 과학이론에 효과적인 토대를 마련해 주는데에 대한 놀라움을 표현하였다. 예를 들어, 비유클리드기하와 3차원 이상의 임의의 차원에서 기하학을 탐구했던 미분 기하학은 당시에는 현실과 연관성을 가지지 않았으나 먼 훗날 일반상대성이론이 4차원 기하학을 필요로 함에 따라, 물리적 세상과 연관이 있음이 밝혀졌다. 또한 게이지이론, 양자장론 등에도 미분 기하학은 필수적이다.

mathematics라는 단어는 '아는 모든 것'라는 뜻의 고대 그리스어 mathematikos에서 유래되었다. 줄여서 math라고 표현하기도 한다.

역사[편집]

수학은 기원전 600년 경에 살았던 탈레스로부터 시작됐다. 하지만 탈레스가 태어나기 전에도 수학을 연구한 사람이 있을 수도 있기 때문에 인류의 역사와 더불어 시작되었다고 할 수 있다. 교역•분배•과세 등의 인류의 사회 생활에 필요한 모든 계산을 수학이 담당해 왔고, 농경 생활에 필수적인 천문 관측과 달력의 제정, 토지의 측량 또한 수학이 직접적으로 관여한 분야이다. 고대 수학을 크게 발전시킨 나라로는 이집트, 인도, 그리스, 중국 등이 있다. 그 중에서도 그리스는 처음으로 수학의 방정식에서 변수문자로 쓴 나라이다.

한국의 수학은 약 1,500년 전부터 기록으로 보이기 시작한다. 신라 시대에 수학을 가르쳤으며, 탈레스가 최초로 발견한 일식월식을 예측할 정도로 발달했다. 조선 시대에 훈민정음을 창제한 세종 대왕집현전 학자들에게 수학 연구를 명하는 등, 조선의 수학 수준을 향상시키기 위해서 많은 노력을 기울였다. 하지만 임진왜란으로 많은 서적들이 불타고, 천문학 분야에서 큰 손실을 입었다. 조선 후기의 한국의 수학은 실학자들을 중심으로 다시 발전하였고, 새로운 결과도 성취되었다.

세부 분야[편집]

주판은 고대로부터 계산 도구로 사용되어왔다.

수학의 각 분야들은 상업에 필요한 계산을 하기 위해, 숫자들의 관계를 이해하기 위해, 토지를 측량하기 위해, 그리고 천문학적 사건들을 예견하기 위해 발전되어왔다. 이 네 가지 목적은 대략적으로 수학이 다루는 대상인 양, 구조, 공간 및 변화에 대응되며, 이들을 다루는 수학의 분야를 각각 산술, 대수학, 기하학, 해석학이라 한다. 또한 이 밖에도 근대 이후에 나타난 수학기초론이산수학응용수학 등이 있다.

산술[편집]

산술은 자연수정수 및 이에 대한 사칙연산에 대한 연구로서 시작했다. 수론은 이런 주제들을 보다 깊게 다루는 학문으로, 그 결과로는 페르마의 마지막 정리 등이 유명하다. 또한 쌍둥이 소수 추측골드바흐 추측 등을 비롯해 오랜 세월 동안 해결되지 않고 남아있는 문제들도 여럿 있다.

수의 체계가 보다 발전하면서, 정수의 집합을 유리수의 집합의 부분집합으로 여기게 되었다. 또한 유리수의 집합은 실수의 집합의 부분집합이며, 이는 또다시 복소수 집합의 일부분으로 볼 수 있다. 여기에서 더 나아가면 사원수팔원수 등의 개념을 생각할 수도 있다. 이와는 약간 다른 방향으로, 자연수를 무한대까지 세어나간다는 개념을 형식화하여 순서수의 개념을 얻으며, 집합의 크기 비교를 이용하여 무한대를 다루기 위한 또다른 방법으로는 기수의 개념도 있다.

자연수 정수 유리수 실수 복소수

대수학[편집]

수 대신 문자를 써서 문제해결을 쉽게 하는 것과, 마찬가지로 수학적 법칙을 일반적이고 간명하게 나타내는 것을 포함한다. 고전대수학은 대수방정식 및 연립방정식의 해법에서 시작하여 군, 환, 체 등의 추상대수학을 거쳐 현대에 와서는 대수계의 구조를 보는 것을 중심으로 하는 선형대수학으로 전개되었다. 수의 집합이나 함수와 같은 많은 수학적 대상들은 내재적인 구조를 보인다. 이러한 대상들의 구조적 특성들이 군론, 환론, 체론 그리고 그 외의 수많은 대수적 구조들을 연구하면서 다루어지며, 그것들 하나하나가 내재적 구조를 지닌 수학적 대상이다. 이 분야에서 중요한 개념은 벡터, 벡터 공간으로의 일반화, 그리고 선형대수학에서의 지식들이다. 벡터의 연구에는 산술, 대수, 기하라는 수학의 중요한 세개의 분야가 조합되어 있다. 벡터 미적분학은 여기에 해석학의 영역이 추가된다. 텐서 미적분학은 대칭성과 회전축의 영향 아래에서 벡터의 움직임을 연구한다. 눈금없는 자와 컴퍼스와 관련된 많은 고대의 미해결 문제들이 갈루아 이론을 사용하여 비로소 해결되었다.

Rubik's cube.svg Elliptic curve simple.svg Group diagram d6.svg Lattice of the divisibility of 60.svg
군론 수론 그래프 이론 순서론

기하학[편집]

공간에 대한 연구는 기하학에서 시작되었고, 특히 유클리드 기하학에서 비롯되었다. 삼각법은 공간과 수들을 결합하였고, 잘 알려진 피타고라스의 정리를 포함한다. 현대에 와서 공간에 대한 연구는, 이러한 개념들은 더 높은 차원의 기하학을 다루기 위해 비유클리드 기하학(상대성이론에서 핵심적인 역할을 함)과 위상수학으로 일반화되었다. 수론과 공간에 대한 이해는 모두 해석 기하학, 미분기하학, 대수기하학에 중요한 역할을 한다. 리 군도 공간과 구조, 변화를 다루는데 사용된다. 위상수학은 20세기 수학의 다양한 지류속에서 괄목할만한 성장을 한 분야이며, 푸앵카레 추측과 인간에 의해서 증명되지 못하고 오직 컴퓨터로만 증명된 4색정리를 포함한다.

Torus.jpg Pythagorean.svg Hyperbolic triangle.svg Koch curve.svg
위상수학 삼각법 미분기하학 프랙털 기하학

해석학[편집]

변화에 대한 이해와 묘사는 자연과학에 있어서 일반적인 주제이며, 미적분학은 변화를 탐구하는 강력한 도구로서 발전되었다. 함수는 변화하는 양을 묘사함에 있어서 중추적인 개념으로써 떠오르게 된다. 실수와 실변수로 구성된 함수의 엄밀한 탐구가 실해석학이라는 분야로 알려지게 되었고, 복소수에 대한 이와 같은 탐구 분야는 복소해석학이라고 한다. 함수해석학은 함수의 공간(특히 무한차원)의 탐구에 주목한다. 함수해석학의 많은 응용분야 중 하나가 양자역학이다. 많은 문제들이 자연스럽게 양과 그 양의 변화율의 관계로 귀착되고, 이러한 문제들이 미분방정식으로 다루어진다. 자연의 많은 현상들이 동역학계로 기술될 수 있다. 혼돈 이론은 이러한 예측 불가능한 현상을 탐구하는 데 상당한 기여를 한다.

Integral as region under curve.svg Vector field.svg Airflow-Obstructed-Duct.png Limitcycle.jpg Lorenz attractor.svg
미적분학 벡터 미적분학 미분방정식 동역학계 혼돈 이론

수학기초론 관련 분야[편집]

수학의 기초를 확실히 세우기 위해, 수리논리학과 집합론이 발전하였고, 이와 더불어 범주론이 최근에도 발전되고 있다. “근본 위기”라는 말은 대략 1900년에서 1930년 사이에 일어난, 수학의 엄밀한 기초에 대한 탐구를 상징적으로 보여주는 말이다. 수학의 엄밀한 기초에 대한 몇 가지 의견 불일치는 오늘날에도 계속되고 있다. 수학의 기초에 대한 위기는 그 당시 수많은 논쟁에 의해 촉발되었으며, 그 논쟁에는 칸토어의 집합론과 브라우어-힐베르트 논쟁이 포함되었다.

Venn A intersect B.svg Commutative diagram for morphism.svg
집합론 범주론 수리논리학

이산수학[편집]

DFAexample.svg Caesar3.svg 6n-graf.svg
조합론 계산 이론 암호학 그래프 이론

응용수학[편집]

Gravitation space source.png BernoullisLawDerivationDiagram.png Composite trapezoidal rule illustration small.png Maximum boxed.png
Two red dice 01.svg Oldfaithful3.png Market Data Index NYA on 20050726 202628 UTC.png Arbitrary-gametree-solved.png

같이 보기[편집]

각주[편집]

  1. Mura, Roberta (December 1993). "Images of Mathematics Held by University Teachers of Mathematical Science". Educational Studies in Mathematics. 25 (4): 375–385. doi:10.1007/BF01273907. JSTOR 3482762.
  2. 타타르키비츠 미학사:중세미학, W.타타르키비츠 씀, 손효주 옮김, 미술문화 펴냄
  3. Wigner, E. P. (1960). "The unreasonable effectiveness of mathematics in the natural sciences". Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Communications on Pure and Applied Mathematics. 13: 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102

참고 자료[편집]

  • Eves, Howard, An Introduction to the History of Mathematics, Sixth Edition, Saunders, 1990, ISBN 0-03-029558-0.
  • Jourdain, Philip E. B., The Nature of Mathematics, in The World of Mathematics, James R. Newman, editor, Dover, 2003, ISBN 0-486-43268-8.
  • Peterson, Ivars, Mathematical Tourist, New and Updated Snapshots of Modern Mathematics, Owl Books, 2001, ISBN 0-8050-7159-8.

외부 링크[편집]