삼각함수

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
삼각 함수

삼각함수(三角函數,Trigonometric functions)는 수학에서 사용되는 에 대한 함수이다. 삼각함수는 삼각형이나 주기적(周期的) 현상의 가정에 주로 사용된다. 삼각함수는 일반적으로 해당 각이 존재하는 직각삼각형의 두 변의 비로 정의되며, 단위원에서의 가변적(可變的)인 호의 길이의 비로 정의되기도 한다. 이들은 무한급수나 특정 미분 방정식로도 표현되어, 그 영역이 임의의 양의 값과 음의값, 또는 복소수로 확장되기도 한다. 삼각함수에는 6개의 기본 함수가 있다.

삼각함수는 삼각형의 각에 변을 연관시킬 때 사용된다. 삼각함수는 여러 방면에 응용되고 있으며, 특히 삼각형의 연구나 주기적 현상의 모형 구축에 중요하게 쓰인다.

기하학적 정의[편집]

직각삼각형

각 C가 직각인 삼각형 ABC에서, 각 A, B, C의 대변(마주보는 변)의 길이를 a, b, h라고 할 때, 사인(sine), 코사인(cosine), 탄젠트(tangent)의 정의는 다음과 같다.

사인: \sin A = \frac{a}{h}
코사인: \cos A = \frac{b}{h}
탄젠트: \tan A = \frac{a}{b}

또한, 코시컨트(cosecant), 시컨트(secant), 코탄젠트(cotangent)는 위 세 함수의 역수가 되며, 다음과 같이 정의한다.

코시컨트: \csc A = \frac{h}{a} = \frac{1}{\sin A}
시컨트: \sec A = \frac{h}{b} = \frac{1}{\cos A}
코탄젠트: \cot A = \frac{b}{a} = \frac{1}{\tan A}
Sine cosine plot.svg   Tangent.svg   Csc drawing process.gif
사인과 코사인의 그래프   탄젠트 그래프   코시컨트 그래프

단위원 정의[편집]

단위원 위의 각 점의 좌표

좌표평면에서 원점을 중심으로 하고 반지름의 길이가 1인 원을 단위원이라고 한다. 이 단위원 위의 점 (x, y)에 대해, x축과 점과 원점을 잇는 직선간의 각을 \theta 라디안이라고 하면, 이때 사인, 코사인은 다음과 같이 정의된다.

\sin \theta = y
\cos \theta = x

또한, 나머지 함수들을 다음과 같이 정의한다.

\tan \theta = \frac{\sin \theta}{\cos \theta}
\sec\theta = \frac{1}{\cos\theta}
\csc\theta = \frac{1}{\sin\theta}
\cot\theta = \frac{1}{\tan\theta} = \frac{\cos\theta}{\sin\theta}

이들은 주기함수로서, 각각 2\pi (사인/코시컨트, 코사인/시컨트)또는 \pi (탄젠트/코탄젠트)의 주기를 갖는다.

부호 및 변환표[편집]

각 사분면에 따른 삼각함수의 부호는 다음과 같다.

사분면  sin과 csc   cos과 sec   tan와 cot 
I + + +
II +
III +
IV +

변환된 값은 다음과 같다.

  sin cos tan cot sec csc
sin(x)  \,\sin(x)  \sqrt{1-\cos^2(x)}  \frac{\tan(x)}{\sqrt{1 + \tan^2(x)}}  \frac{1}{\sqrt{\cot^2(x) + 1}}  \frac{\sqrt{\sec^2(x)-1}} {\sec(x)}  \frac{1}{\csc(x)}
cos(x)  \, \sqrt{1-\sin^2(x)}  \, \cos(x)  \, \frac{1}{\sqrt{1 + \tan^2(x)}}  \, \frac{\cot(x)} {\sqrt{\cot^2(x)+ 1}}  \, \frac{1}{\sec(x)}  \, \frac{\sqrt{\csc^2(x)-1}}{\csc(x)}
tan(x)  \, \frac{\sin(x)}{\sqrt{1-\sin^2(x)}}  \, \frac{\sqrt{1-\cos^2(x)}}{\cos(x)}  \, \tan(x)  \, \frac{1}{\cot(x)}  \, \sqrt{\sec^2(x)-1}  \, \frac{1}{ \sqrt{\csc^2(x)-1}}
cot(x)  \, \frac{\sqrt{1-\sin^2(x)}}{\sin(x)}  \, \frac{\cos(x)}{\sqrt{1-\cos^2(x)}}  \, \frac{1}{\tan(x)}  \, \cot(x)  \, \frac{1}{\sqrt{\sec^2(x)-1}}  \, \sqrt{\csc^2(x)-1}
sec(x)  \, \frac{1}{\sqrt{1-\sin^2(x)}}  \, \frac{1}{\cos(x)}  \, \sqrt{1 + \tan^2(x)}  \, \frac{\sqrt{\cot^2(x) + 1}}{\cot(x)}  \, \sec(x)  \, \frac{\csc(x)}{\sqrt{\csc^2(x)-1}}
csc(x)  \, \frac{1}{\sin(x)}  \, \frac{1}{\sqrt{1 - \cos^2(x)}}  \, \frac{\sqrt{1 + \tan^2 (x)}} {\tan(x)}  \, \sqrt{\cot^2(x) + 1}  \, \frac{\sec(x)}{\sqrt{\sec^2(x) - 1}}  \, \csc(x)

삼각함수 항등식[편집]

삼각함수 사이에는 많은 항등식이 존재한다. 그중 가장 자주 쓰이는 것은 피타고라스 항등식으로, 어떤 각에 대해서도 사인의 제곱과 코사인의 제곱의 합은 1이다. 이는 반지름의 길이가 r이고 밑변이 b, 각 x의 대변 a에 대하여 \frac{a^2+b^2}{r^2}=\frac{r^2}{r^2}=1를 만족한다는 피타고라스의 정리로 설명할 수 있다. 이를 삼각함수로 나타내면 다음과 같다.

\, \sin^2 x  + \cos^2 x  = 1

다른 삼각함수의 관계는 삼각함수의 덧셈정리이다. 두 각의 합과 차의 사인과 코사인은 x, y에 대한 사인과 코사인으로 구할 수 있다. 이는 제이 코사인 법칙두 점 사이의 거리 공식을 연립해 유도할 수 있고, 제일 코사인 법칙과 사인 법칙을 연립해 유도할 수 있고, 오일러의 공식을 이용해 유도할 수도 있다.

\sin \left(x \pm y\right)=\sin x \cos y \pm \cos x \sin y, \,
\cos \left(x \pm y\right)=\cos x \cos y \mp \sin x \sin y (복부호 동순)

두 각의 크기가 같을 경우에는 덧셈정리를 간단하게 배각공식을 이용할 수 있다.

미분과 적분[편집]

삼각함수의 미분적분에 대해서는 미분표, 적분표를 참고하십시오.

다음은 6개의 기본 삼각함수에 대한 도함수와 부정적분이다.

\ \ \ \ f(x) \ \ \ \ f'(x) \int f(x)\,dx
\,\ \sin x \,\ \cos x \,\ -\cos x + C
\,\ \cos x \,\ -\sin x \,\ \sin x + C
\,\ \tan x \,\ \sec^{2} x -\ln \left |\cos x\right | + C
\,\ \cot x \,\ -\csc^{2} x \ln \left |\sin x\right | + C
\,\ \sec x \,\ \sec{x}\tan{x} \ln \left |\sec x + \tan x\right | + C
\,\ \csc x \,\ -\csc{x}\cot{x} \ln \left |\csc x + \cot x\right | + C

삼각함수의 성질과 응용[편집]

사인법칙[편집]

사인법칙은 임의의 삼각형 ABC에서 각 A, B, C의 대변 a, b, c에 대해 다음과 같은 관계를 만족함을 나타낸다.

 \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}

마찬가지로,

 \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}=2R

도 성립한다. 여기서 R은 삼각형의 외접원의 반지름의 길이를 나타낸다.

코사인법칙[편집]

코사인법칙에는 총 두 가지의 법칙이 있다.

코사인 제 1 법칙[편집]

 \, c=b\cos A + a\cos B

앙변의 길이와 알고자 하는 변 사이의 두 각의 크기를 알 경우, 다른 한 변의 길이를 알아낼 때 사용할 수 있다.

코사인 제 2 법칙[편집]

코사인법칙(특히, 코사인 제 2 법칙)은 피타고라스의 정리를 확장한 것이다.

 \, c^2=a^2+b^2-2ab\cos C

가 성립하고, 위의 식을 변형하면

 \cos C=\frac{a^2+b^2-c^2}{2ab}

와 같이 나타낼 수 있다.

코사인법칙은 두 변의 길이와 끼인각의 크기를 알 때 삼각형의 나머지 한 변의 길이를 구할 때 유용하게 쓸 수 있다. 또한 모든 변의 길이를 알고 있을 때 각의 코사인값을 구할 때에도 사용할 수 있다.

탄젠트 법칙[편집]

탄젠트법칙은 임의의 삼각형 ABC에서 각 A, B의 대변 a, b에 다음과 같은 식을 만족시킨다.

 \frac{a+b}{a-b} = \frac{\tan{{1 \over 2}(A+B)}}{\tan{{1 \over 2}(A-B)}}

순허수[편집]

오일러의 공식 \,  e^{ix}=\cos x+i\sin x

\, x=b i 를 대입하면,

\, e^{-b}=\cos bi+i\sin bi

\, x=-bi 를 대입하면,

\, e^{b}=\cos (-bi)+i\sin (-bi)=\cos bi-i\sin bi

연립하여 풀면,

 \cos bi =\frac{e^{b}+e^{-b}}{2}
 \sin bi =\frac{e^{b}-e^{-b}}{2i}

같이 보기[편집]

바깥 고리[편집]