정팔포체

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
정팔포체
슈레겔 다이어그램
슈레겔 다이어그램
종류 컨벡스 레귤러 4 폴리토프
슐래플리 기호 {4,3,3}
t0,3{4,3,2} 또는 {4,3}×{ }
t0,2{4,2,4} 또는 {4}×{4}
t0,2,3{4,2,2} 또는 {4}×{ }×{ }
t0,1,2,3{2,2,2} 또는 { }×{ }×{ }×{ }
콕서터 다이어그램 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
8개 (4.4.4) Hexahedron.png
24개 {4}
모서리 32개
꼭짓점 16개
꼭짓점 그림 8-cell verf.png
사면체
페트리 다각형 팔각형
쌍대 정십육포체
속성 컨벡스, isogonal, isotoxal, isohedral
유니폼 색인 10
4차원 초입방체의 3차원 투영.
달리 크로스, 정팔포체의 전개도.

정팔포체(또는 4차원 초입방체, 영어: tesseract)는 4차원 정다포체의 일종으로 8개의 정육면체로 이루어진 4차원의 초입방체이다.

정육면체 철사를 비눗물에 2번 담궈서 비눗방울을 만들 때 정팔포체의 일종의 투영의 형태가 되는 것으로 알려져 있다(단, 이 때 면은 약간 비뚤어진다).[1]

기하학적으로 보았을 때 정팔포체는 정육면체의 4차원 아날로그라고 할 수 있다. 정육면체의 표면이 6개의 정사각형 모양의 으로 구성되어 있는 것처럼 정팔포체의 초(hyper)표면은 8개의 정육면체 모양의 포로 구성되어 있는 것이다. 정팔포체는 6개의 컨벡스 레귤러 4 폴리토프 중 하나이다.

정팔포체의 영어 표기는 일반적으로 tesseract이며 그 외에도 8-cell, C8, octachoron, octahedroid[2], cubic prism, tetracube[주 1]라고도 불린다. 이것은 4차원 초입방체(영어: four-dimensional hypercube) 또는 초입방체의 차원 계열의 일부인 4-정육면체(영어: 4-cube) 또는 "측정 폴리토프"이다.[3]

옥스포드 영어사전(영어: Oxford English Dictionary)에 따르면 1888년 찰스 하워드 힌톤이 그의 저서 《생각의 새로운 시대》(영어: A New Era of Thought)에서 고대 그리스어의 τέσσερεις ακτίνες(téssereis aktines, 4개의 광선이라는 뜻)에서 단어를 따와 최초로 tesseract라는 단어를 사용했다고 한다(정팔포체가 한 꼭짓점에서 다른 꼭짓점까지 총 4개의 변이 있다는 성질을 이용한 것이다).[4] 그러나 이 간행물과 힌튼의 후기 저작물에서는 이 단어는 간혹 tessaract라고 쓰여지기도 했다.

기하학[편집]

정팔포체의 확장도

정팔포체는 여러 방법으로 만들 수 있다. 모든 모서리 주위에 함께 접혀진 3개의 정육면체를 가진 정다포체로서 그것은 384개의 사면체 대칭을 가진 슐래플리 기호 {4,3,3}을 가지고 있다. 두 개의 평행 정육면체로 구성된 4D 하이프리즘으로 제작되었으며 그것은 대칭성 순서 96을 갖는 합성 슐래플리 기호인 {4,3} × { }로 명명될 수 있다. 그리고 대칭성 순서 64를 갖는 4-4 듀오프리즘일 때 2개의 사각형이 곱집합되며 이것은 합성 슐래플리 기호인 {4}×{4}로 명명될 수 있다. 그리고 대칭성 순서 16을 갖는 하이퍼래탱글로써 그것은 합성 슐래플리 기호인 { } × { } × { } × { } 또는 { }4로 명명될 수 있다.

정팔포체의 각 꼭짓점은 4개의 모서리에 인접하므로 정팔포체의 정점도는 사면체이다. 정팔포체의 이중 폴리토프는 슐래플리 기호 {3,3,4}를 가지고 있는 정십육포체(영어: hexadecachoron 또는 16-cell)이다.

유클리드 4 공간의 표준인 정팔포체는 점(±1, ±1, ±1, ±1)의 볼록한 선체로 주어진다. 즉 아래와 같은 점으로 구성된다:

정팔포체는 8개의 초평면으로 제한된다(xi = ±1). 비평행형 초평면의 각 쌍은 교차하여 정팔포체에서 정사각형 모양의 면 24개를 형성한다. 3개의 정육면체와 3개의 사각형이 각 모서리에서 교차한다. 모든 정점에서 4개의 정육면체, 6개의 정사각형 및 4개의 모서리가 있는 것이다. 모두 8개의 정육면체, 24개의 사각형, 32개의 모서리, 16개의 꼭짓점으로 구성되는 것이다.

2차원 투영[편집]

초입방체의 구성은 아래와 같이 생각할 수 있다:

  • 1차원 : 2개의 점 A와 점 B를 선으로 연결하여 선분 AB를 만든다.
  • 2차원 : 2개의 평행한 선분 AB와 선분 CD를 연결하여 정사각형 ABCD를 만든다.
  • 3차원 : 2개의 평행한 정사각형 ABCD와 정사각형 EFGH를 연결하여 정육면체 ABCDEFGH를 만든다.
  • 4차원 : 2개의 평행한 정육면체 ABCDEFGH와 IJKLMNOP를 연결하여 초입방체 ABCDEFGHIJKLMNOP를 만든다.
왼쪽에서 오른쪽으로, 위에서 아래로 그림을 양분하는 평면에 대해 간단한 회전을 수행하는 정팔포체의 3D 투영법
0차원(점)에서 4차원(정팔포체)까지를 만드는 과정을 보여주는 다이어그램
0차원부터 4차원까지 차원이 바뀌는 과정을 보여주는 애니메이션

정육면체를 2차원 투영할 수 있듯이 정팔포체도 2차원 투영이 가능하다.

2D 평면상에 투영된 꼭짓점들의 위치를 재배치함으로써 더 유익해진다. 이러한 방식으로 더 이상 정팔포체 내의 공간 관계를 반영하지 않는, 아래 예재와 같이 꼭짓점의 연결 구조를 나타내는 그림을 얻어낼 수 있다:

정팔포체는 원칙적으로 2개의 정육면체를 결합하여 얻는다. 이 원칙은 2개의 정사각형으로 이루어진 구조의 정육면체와 비슷하며 하위 차원인 정육면체의 두 복사본을 병치하고 해당 꼭짓점을 연결한다는 것이다. 정팔포체의 각 모서리는 길이가 같다. 이것은 네트워크 토폴로지가 여러 프로세서를 병렬 컴퓨팅으로 연결하기 위한 기초로 정팔포체를 사용할 때 중요하다. 두 노드 사이의 거리는 최대 4이고 무게 균형을 허용하는 많은 경로가 있다.

3차원으로의 평행 투영[편집]

마름모꼴의 12면체는 정팔포체의 꼭짓점 - 1번째 평행 투영의 볼록한 선체를 형성한다. 이 투영법의 레이어에 있는 꼭짓점의 수는 1 4 6 4 1— 파스칼의 삼각형의 4번째 행이다.
정팔포체의 평행 투영 엔벨로프이다(각 포는 다른 색상면으로 그려져 있고 반전된 포는 비연전).

정팔포체의 3차원 공간으로의 1번째 포의 평행 투영은 정육면체 모양의 엔벨로프를 갖는다. 가장 가까운 포와 가장 먼 포가 정육면체로 투영되고 나머지 6개의 포가 6개의 정사각형 모양의 면에 투영된다.

정팔포체의 3차원 공간으로의 1번째 면의 평행 투영은 직육면체 모양의 엔벨로프를 갖는다. 이 엔벨로프의 상반부와 하반부에 2쌍의 포가 돌출되어 있으며 나머지 4개의 포는 측면에 투사된다.

정팔포체의 3차원 공간으로의 1번째 모서리의 평행 투영은 육각기둥 모양의 엔벨로프를 갖는다.

갤러리[편집]

각주[편집]

내용주[편집]

  1. 이 tetracube(테트라큐브)라는 용어는 4개의 정육면체로 만들어진 폴리큐브를 의미하기도 한다.

출처[편집]

  1. “三角四角のしゃぼん玉?” [삼각 사각의 비눗방울?] (일본어). 2016년 11월 21일에 확인함. 
  2. 마틸라 기카, 《미술과 삶의 기하학》(The geometry of Art and Life), 1977년, 68쪽.
  3. 엠마누엘로드 위크 엘트, 《초공간의 반투명 폴리토프》(The Semi Regular Polytopes of the Hyperspaces), 1912년[쪽 번호 필요].
  4. “Oxford English Dictionary” [옥스포드 영어사전] (영어). 2016년 11월 27일에 확인함. 

같이 보기[편집]

바깥 고리[편집]