타이타늄

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
타이타늄(22Ti)
22 ScTiV


Ti

Zr
수소 (비금속)
헬륨 (비활성 기체)
리튬 (알칼리 금속)
베릴륨 (알칼리 토금속)
붕소 (준금속)
탄소 (비금속)
질소 (비금속)
산소 (비금속)
플루오린 (할로젠)
네온 (비활성 기체)
나트륨 (알칼리 금속)
마그네슘 (알칼리 토금속)
알루미늄 (전이후 금속)
규소 (준금속)
인 (비금속)
황 (비금속)
염소 (할로젠)
아르곤 (비활성 기체)
칼륨 (알칼리 금속)
칼슘 (알칼리 토금속)
스칸듐 (전이 금속)
타이타늄 (전이 금속)
바나듐 (전이 금속)
크로뮴 (전이 금속)
망가니즈 (전이 금속)
철 (전이 금속)
코발트 (전이 금속)
니켈 (전이 금속)
구리 (전이 금속)
아연 (전이 금속)
갈륨 (전이후 금속)
저마늄 (준금속)
비소 (준금속)
셀레늄 (비금속)
브로민 (할로젠)
크립톤 (비활성 기체)
루비듐 (알칼리 금속)
스트론튬 (알칼리 토금속)
이트륨 (전이 금속)
지르코늄 (전이 금속)
나이오븀 (전이 금속)
몰리브데넘 (전이 금속)
테크네튬 (전이 금속)
루테늄 (전이 금속)
로듐 (전이 금속)
팔라듐 (전이 금속)
은 (전이 금속)
카드뮴 (전이 금속)
인듐 (전이후 금속)
주석 (전이후 금속)
안티모니 (준금속)
텔루륨 (준금속)
아이오딘 (할로젠)
제논 (비활성 기체)
세슘 (알칼리 금속)
바륨 (알칼리 토금속)
란타넘 (란타넘족)
세륨 (란타넘족)
프라세오디뮴 (란타넘족)
네오디뮴 (란타넘족)
프로메튬 (란타넘족)
사마륨 (란타넘족)
유로퓸 (란타넘족)
가돌리늄 (란타넘족)
터븀 (란타넘족)
디스프로슘 (란타넘족)
홀뮴 (란타넘족)
어븀 (란타넘족)
툴륨 (란타넘족)
이터븀 (란타넘족)
루테튬 (란타넘족)
하프늄 (전이 금속)
탄탈럼 (전이 금속)
텅스텐 (전이 금속)
레늄 (전이 금속)
오스뮴 (전이 금속)
이리듐 (전이 금속)
백금 (전이 금속)
금 (전이 금속)
수은 (전이 금속)
탈륨 (전이후 금속)
납 (전이후 금속)
비스무트 (전이후 금속)
폴로늄 (전이후 금속)
아스타틴 (준금속)
라돈 (비활성 기체)
프랑슘 (알칼리 금속)
라듐 (알칼리 토금속)
악티늄 (악티늄족)
토륨 (악티늄족)
프로트악티늄 (악티늄족)
우라늄 (악티늄족)
넵투늄 (악티늄족)
플루토늄 (악티늄족)
아메리슘 (악티늄족)
퀴륨 (악티늄족)
버클륨 (악티늄족)
캘리포늄 (악티늄족)
아인슈타이늄 (악티늄족)
페르뮴 (악티늄족)
멘델레븀 (악티늄족)
노벨륨 (악티늄족)
로렌슘 (악티늄족)
러더포듐 (전이 금속)
더브늄 (전이 금속)
시보귬 (전이 금속)
보륨 (전이 금속)
하슘 (전이 금속)
마이트너륨 (미확정)
다름스타튬 (미확정)
뢴트게늄 (미확정)
코페르니슘 (전이 금속)
우눈트륨 (미확정)
플레로븀 (미확정)
우눈펜튬 (미확정)
리버모륨 (미확정)
우눈셉튬 (미확정)
우누녹튬 (미확정)
육방정계
22 전자 껍질
22Ti
일반적 성질
, 주기, 구역 4족, 4주기, d-구역
화학 계열 전이 금속
겉보기 금속성 은색
Ti,22.jpg
원자 질량 47.867(1) g/mol
전자 배열 [Ar] 3d2 4s2
준위전자 2, 8, 10, 2
타이타늄의 전자껍질 (2, 8, 10, 2)
물리적 성질
상태 고체
밀도 (실온) 4.506 g·cm−3
액체 밀도 (녹는점) 4.11 g·cm−3
녹는점 1941 K
끓는점 3560 K
융해열 14.15 kJ/mol
기화열 425 kJ/mol
열용량 (25 °C) 25.060 J/(mol·K)
증기압
압력(Pa) 1 10 100 1 k 10 k 100 k
온도(K) 1982 2171 (2403) 2692 3064 3558
원자의 성질
산화수 4
(양쪽성 산화물)
전기 음성도 1.54 (폴링 척도)
이온화 에너지 1차: 658.8 kJ/mol
2차: 1309.8 kJ/mol
3차: 2652.5 kJ/mol
원자 반지름 140 pm
원자 반지름 (계산) 176 pm
공유 반지름 136 pm
그 밖의 성질
결정 구조 육방정계
자기적 질서  ???
전기저항률 0.420 μΩ·m
열전도율 (300 K) 21.9 W/(m·K)
열팽창계수 (25 °C) 8.6 µm·m−1·K−1
음속 (막대) (실온) 5090 m/s
영률 116 GPa
전단 탄성 계수 44 GPa
푸아송 비 0.32
모스 굳기 6.0
비커스 굳기 970 MPa
브리넬 굳기 716 MPa
CAS 등록번호 7740-32-6
주요 동위 원소
동위체 존재비 반감기 DM DE
(MeV)
DP
44Ti 합성 63y ε - 44Sc
γ 0.07D, 0.08D -
46Ti 8.0% 안정
47Ti 7.3% 안정
48Ti 73.8% 안정
49Ti 5.5% 안정
50Ti 5.4% 안정
동위 원소 목록

타이타늄, 티타늄(←영어: titanium 타이테이니엄[*]) 또는 티탄(←독일어: Titan 티탄[*])은 화학 원소로 기호는 Ti(←라틴어: titanium 티타니움[*])이고 원자 번호는 22이다. 가볍고 단단하고 내부식성이 있는 전이 금속 원소로 은백색의 금속 광택이 있다. 순수한 타이타늄은 낮은 물성치로 인해 강한 내식성이 요구 되는곳을 제외하곤 대부분 합금으로 많이 쓰인다. 또한 이산화 타이타늄은 흰색 안료의 재료로, 페인트 등에 쓰인다.

타이타늄은 여러 광물에 널리 분포하는데, 주로 티탄철석금홍석에서 얻는다. 두 가지 동소체과 다섯 가지 자연 동위 원소로 발견되며, 가장 흔한 것은 48Ti이다. 타이타늄의 가장 중요한 성질은 뛰어난 내식성비중이 낮아 강철 대비 무게는 60%밖에 되지 않는다는 것이다. 타이타늄의 물리적, 화학적 성질은 지르코늄과 비슷하다.

발견[편집]

  • 1791년 영국 아마추어 지질학자이자 목사인 William Gregor이 의해 강가의 하천에서 타이타늄를 발견하고 ‘Manaccin’으로 명명하였다.
  • 1795년 독일의 Martin H. Klaproth이 Rutile(금홍석)에서 타이타늄을 따로 발견하고 ‘Titan’으로 명명하였다.
  • 1797년 두 사람이 발견한 원소가 동일한 것으로 밝혀졌으며 영국에서는 ‘Titanium’ 독일에서는 ‘Titan’ 이라고 표기한다.

상용화[편집]

타이타늄은 지각을 구성하는 금속원소중 4번째를 차지할 정도로 매장량이 풍부한 것에 비해 사용량이 적은 주요 원인은 TiO2가 주성분인 타이타늄 광물을 제련하기가 어렵기 때문이다. 즉, TiO2는 열역학적으로 매우 안정하여 환원하기가 어려우며 또한 타이타늄은 산소, 탄소, 질소, 수소 등과 친화력이 매우 크기 때문에 순수한 금속을 얻기도 어렵다. TiO2를 직접 환원하여 순수한 타이타늄 금속을 얻는 것이 불가능하였기 때문에 발견된 이후 한참이 지나서야 타이타늄의 제련이 가능하게 되었다.

  • 1910년에 미국의 M.A. Hunter는 철제 용기 내에서 TiCl4나트륨(Na)으로 환원하여 타이타늄을 제련하는데 성공하였으며 이는 Hunter Process로 불리고 있다.
  • 1932년에 룩셈부르크의 W.J. Kroll은 TiCl4칼슘(Ca)을 반응시켜 상당량의 타이타늄을 얻었으며,
  • 1937년에는 TiCl4아르곤(Ar) 기체 속에서 마그네슘(Mg)으로 환원하여 스폰지 형태의 타이타늄을 얻는데 성공하였고 이것이 오늘날 Kroll법의 시초다.

그 후 미국 광산국의 추진으로 Kroll법의 상용화가 이루어졌으며 마침내 1948년에 듀폰사에서 최초로 타이타늄을 상업적으로 생산하게 되었다. 현재에도 상업용 타이타늄은 거의 독점적으로 Kroll법에 의해 생산되고 있으며 지난 60년 동안 생산성 및 품질 측면에서 많은 개선을 이루어 왔다.

합금 종류[편집]

타이타늄 합금은 실온의 결정 구조에 의해 4가지 종류로 나뉘며, 시중에서는 ASTM 기준 등급으로 구분된다.

결정 구조에 따른 종류[편집]

  • 순수타이타늄: 낮은 강도로 인해 강한 내식성이 요구 되는곳 에서만 쓰인다.
  • α 합금: 다름 합금보다 상온 강도가 낮으나 저온 안정상이므로 수 백도의 고온이 되어도 취약한 상을 석출할 염려가 없어서 내열 티탄합금의 기본이 된다. 알루미늄(Al), 주석(Sn), 지르코늄(Zr) 등을 첨가하여 α상을 고용 강화한 단일상이며 β 합금에 비해 가공성은 떨어진다.
  • α-β 합금: 가장 널리 사용 되는 합금으로 Ti-6Al-4V 합금이 대표적인 합금이다. 강도는 122 ~ 97kgf/㎟ 정도이고 높은 인성을 가지며, 소성 가공성, 용접성, 주조성도 좋아서 사용하기 쉽고 신뢰성이 큰 합금이다.
  • β 합금: β형 합금은 V, Mo등의 β안정화 원소가 다량으로 첨가되는 합금으로 용체화 처리와 시효에 의해 130 kgf/㎟을 넘는 고강도를 얻을 수 있는 특징이 있지만 가공은 곤란해진다.
  • 나노 타이타늄은 의학적인 목적으로 쓰인다.[1]

미국재료시험협회 기준 등급[편집]

Grade1 순수타이타늄 pure titanium
Grade2 `` ``
Grade3 `` ``
Grade4 `` ``
Grade5 합금 Ti-6Al-4V
... `` ...
... `` ...
Grade28 `` Ti-3Al-5V-0.1Ru (Grade 9 with Ru)
... `` ...
... `` ...

일반적 특징[편집]

  • 비중이 작아 가볍다: 철의 절반 정도의 무게만으로도 철과 유사한 수준의 강도를 낼 수 있다.
  • 뛰어난 내식성을 가진다: 상온 부근의 물 또는 공기 중에서는 부동태 피막이 형성되어 금이나 백금 다음 가는 우수한 내식성을 가진다.
  • 녹는점이 약 1670℃ 정도로 매우 높아서 완전한 주괴 제작이 곤란하다.
  • 고온에서는 급격히 산화되어 본래 요구되는 성질이 없어지기 때문에 열간 가공과 용접이 곤란하다.
  • 높은 항복 응력 때문에 냉간 가공 또한 어렵다.
  • 상온에서 안정한 산화피막이 생겨서 부식을 방지하지만 600℃ 이상의 고온에서는 반응성이 아주 좋아서 O2, N2, H2 등의 원소로 오염되어 내식성을 저하시키거나 용착 금속내부에 다공성 등의 결함을 발생시키게 되어 내식성 뿐만 아니라 기계적 성질 까지 모두 저하시킨다.

주석[편집]

  1. 임상수. "냉전시대 무기 개발기술, 치료목적 재탄생", 《연합뉴스》, 2010년 10월 18일 작성. 2010년 10월 21일 확인.

바깥 고리[편집]