정칙 국소환

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기

가환대수학에서, 정칙 국소환(正則局所環, 영어: regular local ring)은 극대 아이디얼의 최소 생성원 집합의 크기가 크룰 차원과 같은 뇌터 국소환이다.

정의[편집]

가환 뇌터 국소환 에 대하여, 다음 두 성질들은 서로 동치이며, 이를 만족시키는 가환 뇌터 국소환을 정칙 국소환이라고 한다. (여기서 의 유일한 극대 아이디얼이며, 은 그 잉여류체이다.)

  • 극대 아이디얼 개의 원소들로 생성된다 (크룰 차원).
    • 크룰 높이 정리에 따라, 임의의 뇌터 환의 극대 아이디얼에 대하여, 은 최소한 개 이상의 원소로 생성된다. 즉, 이 조건은 크룰 높이 정리에 따른 하한이 포화된다는 것이다.
  • 이다. 여기서 -벡터 공간의 차원이다.
    • 의 유일한 닫힌 점 에서의 자리스키 공변접공간이다. 즉, 이 조건은 자리스키 (공변)접공간의 차원이 아핀 스킴 자체의 (크룰) 차원과 같다는 것이다.

정칙 스킴은 모든 국소환이 정칙 국소환인 스킴이다. 정칙환(正則環, 영어: regular ring) 아핀 스킴 정칙 스킴가환환이다. 즉, 모든 소 아이디얼에서의 국소화가 정칙 국소환인 가환환이다.

[편집]

모든 는 정칙 국소환이다. (체는 크룰 차원이 0이며, 체에서는 영 아이디얼이 극대 아이디얼이다.) 정칙 국소환 에 대하여, 다음 두 조건이 동치이다.

  • 이다.
  • 이다.

모든 이산 값매김환은 정칙 국소환이다. 정칙 국소환 에 대하여, 다음 두 조건이 동치이다.

  • 이산 값매김환이다.
  • 이다.

특히, 소수 에 대한 p진 정수은 이산 값매김환이므로 정칙 국소환이다. 이는 를 포함하지 않는 정칙 국소환의 예이다.

국소환 에 대한, 개의 변수에 대한 형식적 멱급수환 은 정칙 국소환이다. 특히, 체 에 대한 형식적 멱급수환 차원의 정칙 국소환이다.

성질[편집]

오슬랜더-북스바움 정리(영어: Auslander–Buchsbaum theorem)에 따르면, 모든 정칙 국소환은 유일 인수 분해 정역이다.[1]

정칙 국소환의 모든 국소화완비화 역시 정칙국소환이다.

를 포함하는 정칙 국소환 는 스스로의 분수체에 대한 형식적 멱급수환이다. 즉,

이다.

대수기하학에서의 응용[편집]

대수기하학에서, 완전체에 대한 대수다양체 에서 비특이인 필요충분조건은 국소환 가 정칙 국소환인 것이다. "정칙 국소환"이라는 이름은 이 성질에서 유래하였다. 이를 사용하여, 정칙성을 일반적인 스킴에 대하여 정의할 수 있다. 정칙 스킴(영어: regular scheme)은 정칙환의 스펙트럼으로 덮을 수 있는 스킴이다.

대수적으로 닫힌 체 에 대한 아핀 대수다양체 속의 (닫힌) 점 에 대하여, 다음 두 조건이 동치이다.[2]

  • 국소환 가 정칙국소환이다.
  • 가 다항식들 의 영점들의 교집합이라고 하자. 그렇다면, 에서의 야코비 행렬 계수이다.

즉, 대수적으로 닫힌 체에 대한 대수다양체의 경우 이 조건은 고전적인 비특이점의 개념과 일치함을 알 수 있다.

참고 문헌[편집]

  1. Auslander, Maurice; Buchsbaum, David Alvin (1959). “Unique factorization in regular local rings”. 《Proceedings of the National Academy of Sciences of the United States of America》 45: 733–734. ISSN 0027-8424. JSTOR 90213. MR 0103906. doi:10.1073/pnas.45.5.733. 
  2. Hartshorne, Robin (1977). 《Algebraic Geometry》. Graduate Texts in Mathematics (영어) 52. Springer. ISBN 978-0-387-90244-9. ISSN 0072-5285. MR 0463157. Zbl 0367.14001. doi:10.1007/978-1-4757-3849-0. 

외부 링크[편집]