양자장론 에서 4승 상호작용 (四乘相互作用, quartic interaction)이란 그 라그랑지안 이
ϕ
4
{\displaystyle \phi ^{4}}
꼴의 상호작용 항을 포함하는 스칼라 장 φ를 다루는 이론이다. 즉, 클라인 고든 라그랑지안 에서
−
λ
4
!
ϕ
4
{\displaystyle -{\frac {\lambda }{4!}}\phi ^{4}}
항을 더한다. (λ는 4차원 시공 에서 무차원 결합상수 이다.) 결합상수(λ)가 무차원이기 때문에, 이 이론은 재규격화 가 가능하다. 사승 상호작용은은 양자장론에서 가장 쉬운 이론 중 하나며, 각종 교과서에서 예제로 쓴다.
이 문서에서는 시공의 계량 부호수 를 +−−−로 쓴다.
실수 스칼라장의 경우, 이론의 라그랑지안은 다음과 같다.
L
=
1
2
∂
μ
ϕ
∂
μ
ϕ
−
m
2
2
ϕ
2
−
λ
4
!
ϕ
4
{\displaystyle {\mathcal {L}}={\frac {1}{2}}\partial ^{\mu }\phi \partial _{\mu }\phi -{\frac {m^{2}}{2}}\phi ^{2}-{\frac {\lambda }{4!}}\phi ^{4}}
이 라그랑지안은 전반적 대칭 Z 2 대칭을 지닌다. 즉, φ를 −φ로 바꾸어도 라그랑지안은 바뀌지 않는다.
복소 스칼라장의 경우, 라그랑지안은 다음과 같다.
L
=
∂
μ
ϕ
∗
∂
μ
ϕ
−
m
2
ϕ
∗
ϕ
−
λ
4
(
ϕ
∗
ϕ
)
2
{\displaystyle {\mathcal {L}}=\partial ^{\mu }\phi ^{*}\partial _{\mu }\phi -m^{2}\phi ^{*}\phi -{\frac {\lambda }{4}}(\phi ^{*}\phi )^{2}}
n 개의 실수 스칼라 마당이 있는 경우, 다음과 같이 일반화 할 수 있다.
L
=
1
2
∂
μ
ϕ
a
∂
μ
ϕ
a
−
m
2
2
ϕ
a
ϕ
a
−
λ
8
(
ϕ
a
ϕ
a
)
2
.
{\displaystyle {\mathcal {L}}={\frac {1}{2}}\partial ^{\mu }\phi _{a}\partial _{\mu }\phi _{a}-{\frac {m^{2}}{2}}\phi _{a}\phi _{a}-{\frac {\lambda }{8}}(\phi _{a}\phi _{a})^{2}.}
이 이론은 SO(n) 대칭을 지닌다. 하나의 복소 스칼라장은 두개의 실수 스칼라장과 동등하다.
이론의 안정성 을 보장하가 위해, 결합 상수 λ는 양수이어야 한다.
4차원에서는 사승 상호작용은 양자전기역학 과 같이 란다우 극 (Landau pole)을 가진다. 따라서 양자 자명성 (quantum triviality)으로 인하여, 유효 이론 으로만 존재한다.
운동량 마당을 π라 부르자. φ와 π 둘 다 에르미트 연산자 다. 슈뢰딩거 묘사 를 쓰자. 동시(同時)에, 마당의 정규 교환자 를 다음과 같이 정의한다.
[
ϕ
(
x
→
)
,
ϕ
(
y
→
)
]
=
[
π
(
x
→
)
,
π
(
y
→
)
]
=
0
{\displaystyle [\phi ({\vec {x}}),\phi ({\vec {y}})]=[\pi ({\vec {x}}),\pi ({\vec {y}})]=0}
[
ϕ
(
x
→
)
,
π
(
y
→
)
]
=
i
δ
(
x
→
−
y
→
)
.
{\displaystyle [\phi ({\vec {x}}),\pi ({\vec {y}})]=i\delta ({\vec {x}}-{\vec {y}}).}
이론의 해밀토니안 은 (윅 순서 를 무시하면) 다음과 같다.
H
=
∫
d
3
x
[
1
2
π
2
+
1
2
(
∇
ϕ
)
2
+
m
2
2
ϕ
2
+
λ
4
!
ϕ
4
]
.
{\displaystyle H=\int d^{3}x\left[{1 \over 2}\pi ^{2}+{1 \over 2}(\nabla \phi )^{2}+{m^{2} \over 2}\phi ^{2}+{\lambda \over 4!}\phi ^{4}\right].}
운동량 공간으로 푸리에 변환 하면, 다음을 얻는다.
ϕ
~
(
k
→
)
=
∫
d
3
x
e
−
i
k
→
⋅
x
→
ϕ
(
x
→
)
{\displaystyle {\tilde {\phi }}({\vec {k}})=\int d^{3}xe^{-i{\vec {k}}\cdot {\vec {x}}}\phi ({\vec {x}})}
π
~
(
k
→
)
=
∫
d
3
x
e
−
i
k
→
⋅
x
→
π
(
x
→
)
.
{\displaystyle {\tilde {\pi }}({\vec {k}})=\int d^{3}xe^{-i{\vec {k}}\cdot {\vec {x}}}\pi ({\vec {x}}).}
여기서
k
2
+
m
2
{\displaystyle {\sqrt {k^{2}+m^{2}}}}
를 에너지 E 라고 부르자.
다음과 같이 파괴 연산자 (annihilation operator) a 를 정의한다.
a
(
k
→
)
=
(
E
ϕ
~
(
k
→
)
+
i
π
~
(
k
→
)
)
.
{\displaystyle a({\vec {k}})=\left(E{\tilde {\phi }}({\vec {k}})+i{\tilde {\pi }}({\vec {k}})\right).}
그 에르미트 수반
a
†
{\displaystyle a^{\dagger }}
는 생성 연산자 가 된다.
a
†
(
k
→
)
=
(
E
ϕ
~
(
k
→
)
−
i
π
~
(
k
→
)
)
.
{\displaystyle a^{\dagger }({\vec {k}})=\left(E{\tilde {\phi }}({\vec {k}})-i{\tilde {\pi }}({\vec {k}})\right).}
생성 및 파괴 연산자를 통틀어 사다리 연산자 라 부르자.
사다리 연산자의 교환자 는 다음과 같다. (이는 비상대적 양자역학 에서의 양자 조화 진동자 와 동일한 구조이다.)
[
a
(
k
→
1
)
,
a
(
k
→
2
)
]
=
[
a
†
(
k
→
1
)
,
a
†
(
k
→
2
)
]
=
0
{\displaystyle [a({\vec {k}}_{1}),a({\vec {k}}_{2})]=[a^{\dagger }({\vec {k}}_{1}),a^{\dagger }({\vec {k}}_{2})]=0}
[
a
(
k
→
1
)
,
a
†
(
k
→
2
)
]
=
(
2
π
)
3
2
E
δ
(
k
→
1
−
k
→
2
)
.
{\displaystyle [a({\vec {k}}_{1}),a^{\dagger }({\vec {k}}_{2})]=(2\pi )^{3}2E\delta ({\vec {k}}_{1}-{\vec {k}}_{2}).}
점유수 (occupancy number) n 은 다음과 같다.
n
†
(
k
→
)
=
a
†
(
k
→
)
a
(
k
→
)
{\displaystyle n^{\dagger }({\vec {k}})=a^{\dagger }({\vec {k}})a({\vec {k}})}
총 입자 수 N 은 다음과 같다.
N
=
∫
d
3
k
(
2
π
)
3
1
2
E
n
(
k
→
)
,
{\displaystyle N=\int {d^{3}k \over (2\pi )^{3}}{1 \over 2E}n({\vec {k}}),}
이는 항상 양의 정수 혹은 0이다. 생성 연산자는 총 입자수를 1 증가시키고, 파괴 연산자는 1 감소시킨다.
해밀토니안 을 사다리 연산자로 쓰면 다음과 같다.
H
=
∫
d
3
k
(
2
π
)
3
1
2
E
E
(
a
†
(
k
→
)
a
(
k
→
)
+
(
2
π
)
3
E
δ
(
0
→
)
)
+
{\displaystyle H=\int {d^{3}k \over (2\pi )^{3}}{1 \over 2E}E\left(a^{\dagger }({\vec {k}})a({\vec {k}})+(2\pi )^{3}E\delta ({\vec {0}})\right)+}
+
λ
4
!
⨌
d
3
k
1
(
2
π
)
3
2
E
1
d
3
k
2
(
2
π
)
3
2
E
2
d
3
k
3
(
2
π
)
3
2
E
3
d
3
k
4
(
2
π
)
3
2
E
4
(
2
π
)
3
δ
(
k
→
1
+
k
→
2
+
k
→
3
+
k
→
4
)
(
a
†
(
k
→
1
)
+
a
(
k
→
1
)
)
(
a
†
(
k
→
2
)
+
a
(
k
→
2
)
)
(
a
†
(
k
→
3
)
+
a
(
k
→
3
)
)
(
a
†
(
k
→
4
)
+
a
(
k
→
4
)
)
.
{\displaystyle +{\lambda \over 4!}\iiiint {d^{3}k_{1} \over (2\pi )^{3}2E_{1}}{d^{3}k_{2} \over (2\pi )^{3}2E_{2}}{d^{3}k_{3} \over (2\pi )^{3}2E_{3}}{d^{3}k_{4} \over (2\pi )^{3}2E_{4}}(2\pi )^{3}\delta ({\vec {k}}_{1}+{\vec {k}}_{2}+{\vec {k}}_{3}+{\vec {k}}_{4})\left(a^{\dagger }({\vec {k}}_{1})+a({\vec {k}}_{1})\right)\left(a^{\dagger }({\vec {k}}_{2})+a({\vec {k}}_{2})\right)\left(a^{\dagger }({\vec {k}}_{3})+a({\vec {k}}_{3})\right)\left(a^{\dagger }({\vec {k}}_{4})+a({\vec {k}}_{4})\right).}
첫 번째 항은 디랙 델타 로 인해 발산 한다. 그러나 (일반 상대론 을 고려하지 않으면) 진공 에너지 는 중요하지 않으므로, 무시한다. 두 번째 항도 발산하는데, 이를 고치기 위해서 윅 순서 (Wick order)를 가한다. (어차피 양자화 할 때 순서가 모호하므로, 순서를 바꾸는 건 상관없다.) 따라서, 발산하는 부분을 제거하면 해밀토니안은 다음과 같이 된다.
:
H
:
=
∫
d
3
x
[
1
2
:
π
2
:
+
1
2
:
(
∇
ϕ
)
2
:
+
m
2
2
:
ϕ
2
:
+
λ
4
!
:
ϕ
4
:
]
{\displaystyle {:H:}=\int d^{3}x\left[{1 \over 2}{:\pi ^{2}:}+{1 \over 2}{:(\nabla \phi )^{2}:}+{m^{2} \over 2}{:\phi ^{2}:}+{\lambda \over 4!}{:\phi ^{4}:}\right]}
이 해밀토니안은 N|0>=0을 만족시키는 에너지가 0인 상태가 존재하는데, 이 상태를 진공 이라 하자. 해밀토니안 에서, 2차항은 자유 해밀토니안, 나머지는 상호작용 해밀토니안이다. 자유 해밀토니안에서, 운동량이
k
→
{\displaystyle {\vec {k}}}
인 입자는 에너지
k
2
+
m
2
{\displaystyle {\sqrt {k^{2}+m^{2}}}}
를 가짐을 알 수 있다. 이는 특수상대론 과 같다.
이 해밀토니안을 다이슨 급수 로 전개하여 건드림이론 으로 만들면, 파인만 도표 를 얻는다.
't Hooft, G. The Conceptual Basis of Quantum Field Theory. (online version )