비틀어 늘린 쌍각뿔
보이기
비틀어 늘린 쌍각뿔의 집합 | |
---|---|
비틀어 늘린 오각쌍뿔은 정이십면체이다. | |
면 | 삼각형 4n개 |
모서리 | 6n |
꼭짓점 | 2n+2 |
대칭군 | Dnd, [2+,2n], (2*n), 4n차 |
회전군 | Dn, [2,n]+, (22n), 2n차 |
쌍대다면체 | 깎은 엇쌍각뿔 |
특성 | 볼록 |
기하학에서 비틀어 늘린 쌍각뿔은 n각쌍뿔에 엇각기둥을 합동인 두 절반 사이에 넣음으로 "늘려"서 생성되는 무한한 다면체의 집합이다.
형태
[편집]이 집합의 둘은 삼각형 다면체이다. 즉, 완전히 정삼각형으로만 구성되었다: 존슨의 다면체인 비틀어 늘린 사각쌍뿔, 그리고 플라톤의 다면체인 정이십면체이다. 비틀어 늘린 삼각쌍뿔은 정삼각형으로 만들어질 수 있지만, 동일평면에 있는 면 때문에, 다시말해 엄밀히 볼록하지 않기 때문에 삼각형 다면체는 아니다. 삼각형들의 쌍은 마름모로 합쳐져서, 엇삼각쌍뿔로 볼 수 있다. 다른 것들은 이등변삼각형으로 만들 수 있다.
n | 3 | 4 | 5 | 6 | n |
---|---|---|---|---|---|
종류 | 평면 | 등변 | 정 | 평면 | |
모양 | 비틀어 늘린 삼각쌍뿔 | 비틀어 늘린 사각쌍뿔 | 비틀어 늘린 오각쌍뿔 (정이십면체) |
비틀어 늘린 육각쌍뿔 | 비틀어늘린 쌍뿔 |
그림 | |||||
면 | 12 | 16 | 20 | 24 | 4n |
쌍대 | 깎은 엇삼각쌍뿔 | 깎은 엇사각쌍뿔 | 깎은 엇오각쌍뿔 (정십이면체) |
깎은 엇육각쌍뿔 | 깎은 엇쌍각뿔 |
같이 보기
[편집]외부 링크
[편집]- Conway Notation for Polyhedra Try: "knAn", where n=4,5,6... example "k5A5" is an icosahedron.
이 글은 기하학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다. |