자기 사상

위키백과, 우리 모두의 백과사전.
(자기준동형사상에서 넘어옴)
이동: 둘러보기, 검색

수학에서, 자기 사상(自己寫像, 영어: endomorphism 엔도모피즘[*])은 그 정의역공역이 같은 사상이다.

정의[편집]

범주 \mathcal C에서, f\colon X\to X와 같이, 시작과 끝이 같은 사상을 자기 사상이라고 한다.

  • 집합의 범주에서, 자기 사상은 정의역공역이 같은 함수이며, 이를 자기 함수(自己函數, 영어: self-map)라고 한다.
  • 대수 구조의 범주에서, 자기 사상은 자기 준동형 사상(自己準同型寫像)이라고 한다.
  • (작은) 범주의 범주에서, 자기 사상은 정의역과 공역이 같은 함자이며, 이를 자기 함자(自己函子, 영어: endofunctor)라고 한다.

범주 \mathcal C의 대상 X가 주어졌을 때, X의 자기 사상들은 모노이드를 이루며, 이를 자기 사상 모노이드(自己寫像monoid, 영어: endomorphism monoid)라고 한다.

동형 사상인 자기 사상을 자기 동형 사상이라고 한다.

구체적 범주의 자기 사상 f\colon X\to X에 대하여, 고정점f(x)=x인 원소 x\in X이다.

[편집]

K에 대한 벡터 공간의 범주 K\text{-Vect}에서, 벡터 공간 V의 자기 사상은 선형 변환 V\to V이다. 유한 차원의 경우, 이는 정사각 행렬로 나타낼 수 있으며, 이 경우 자기 사상환은 정사각 행렬들의 환 \operatorname{Mat}(\dim V,k)이다. 자기 동형 사상은 이 가운데 여핵이 모두 0차원인 경우(전단사인 경우)다.

준군의 경우, 모든 자기 사상은 자기 동형 사상이다. 모노이드 M을 하나의 대상 \bullet만을 갖는 범주로 간주하였을 때, 유일한 대상의 자기 사상 모노이드 \operatorname{End}(\bullet)M 자체와 동형이다.

위상 공간의 자기 사상의 경우, 렙셰츠 고정점정리브라우어르 고정점정리와 같은 정리들이 성립한다.

참고 문헌[편집]

바깥 고리[편집]

같이 보기[편집]