작도 가능한 수

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
수학 체계
기초

\mathbb{N}\sub\mathbb{Z}\sub\mathbb{Q}\sub\mathbb{R}\sub\mathbb{C}

복소수의 확장
기타

i 허수 단위 = \sqrt{-1}
\pi 원주율 ≈ 3.14159 26535 ...
e 자연로그의 밑 ≈ 2.71828 ( \notin \mathbb{Q})

주요 상수

π - e - √2 - √3 - γ -
φ - β* - δ - α - C2 -
M1 - B2 - B4 - Λ - K -
K - K - L - μ - EB -
Ω - β - λ - D(1) - λμ -
Cah. - Lap. - A-G - Λ - K-L -
Apr. - θ - Bac. - Prt. - Lb. -
Niv. - Sie. - Kin. - F - L

2의 제곱근의 작도

작도 가능한 수는 눈금 없는 자와 컴퍼스를 사용하여 작도할 수 있는 수를 말한다. 유리수제곱근사칙연산을 유한번(有限番) 적용해서 얻어지는 수만이 작도가 가능하다. 따라서 초월수는 작도가 불가능하다. 작도 가능한 수들의 집합은 하나의 를 이룬다.

정의[편집]

고정된 좌표계가 주어진 (혹은 단위 길이의 선분이 주어진) 유클리드 평면 위의 점이 눈금 없는 자와 컴퍼스만을 사용하여 작도할 수 있을 때 그 점을 작도 가능하다고 한다. 좌표계에서 어떤 복소수에 대응하는 점이 작도 가능할 때 그 수를 작도 가능한 수라고 한다. 다른 정의로, 단위 길이의 선분이 주어졌을 때 \left | r \right |의 길이를 가지는 선분을 눈금 없는 자와 컴퍼스만 가지고 작도할 수 있을 때 실수 r은 작도 가능하며, 실수부와 허수부가 모두 작도 가능한 복소수는 작도 가능하다고 할 수 있다.

같이 보기[편집]