파레토 분포

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기
파레토 분포
확률 밀도 함수
Probability density function of Pareto distribution.svg
누적 분포 함수
Cumulative distribution function of Pareto distribution.svg
매개변수 xm > 0 scale (real)
α > 0 shape
지지집합
확률 밀도
누적 분포
기댓값
최빈값
분산
비대칭도
첨도
엔트로피
적률생성함수
특성함수

통계학에서, 파레토 분포(Pareto分布, 영어: Pareto distribution)는 사회과학에서 널리 볼 수 있는 확률분포이다.

정의[편집]

파레토 분포는 다음 성질을 만족시키는 확률변수 가 따르는 확률분포이다.

즉, 파레토 분포는 두 개의 매개변수 를 가진다. 의 최솟값이고, 파레토 지표라는 매개변수이다. 가 더 크다면 이 분포는 더 큰 불평등을 나타낸다. 즉, 가 0에 가까울 수록 더 균등분포에 가깝고, 반대로 가 더 클 수록 디랙 델타 함수에 가까워진다.

응용[편집]

빌프레도 파레토는 파레토 분포를 사회에서 부의 분포를 나타내기 위해 사용하였다. 사회에서는 부의 불공평한 분포로 인해 대부분의 부가 소수에 의해 소유되는데 (파레토 법칙), 파레토 분포는 이를 효과적으로 나타낸다.[1]

참고 문헌[편집]

  1. Pareto, Vilfredo, Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, 1964, pages 299–345.
  • M. O. Lorenz (1905). “Methods of measuring the concentration of wealth”. 《Publications of the American Statistical Association9 (70): 209–219. Bibcode:1905PAmSA...9..209L. doi:10.2307/2276207. 
  • Pareto V (1965) "La Courbe de la Repartition de la Richesse" (Originally published in 1896). In: Busino G, editor. Oevres Completes de Vilfredo Pareto. Geneva: Librairie Droz. pp. 1–5.
  • Pareto, V. (1895). La legge della domanda. Giornale degli Economisti, 10, 59–68. English translation in Rivista di Politica Economica, 87 (1997), 691–700.
  • Pareto, V. (1897). Cours d'économie politique. Lausanne: Ed. Rouge.

같이 보기[편집]

외부 링크[편집]