인공신경망

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

인공신경망(artificial neural network 뉴럴 네트워크[*])은 뇌기능의 특성 몇 가지를 컴퓨터 시뮬레이션으로 표현하는 것을 목표로 하는 수학 모델이다.

인공신경망은 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 전반을 가리킨다. 좁은 의미에서는 오차역전파법을 이용한 다층퍼셉트론을 가리키는 경우도 있지만, 이것은 잘못된 용법으로, 인공신경망은 이에 국한되지 않는다.

인공신경망에는 교사 신호(정답)의 입력에 의해서 문제에 최적화되어 가는 교사 학습과 교사 신호를 필요로 하지 않는 비교사 학습이 있다. 명확한 해답이 있는 경우에는 교사 학습이, 데이터 클러스터링에는 비교사 학습이 이용된다. 결과적으로 모두 차원을 줄이기 위해, 화상이나 통계 등 다차원량의 데이터로, 선형 분리 불가능한 문제에 대해서, 비교적 작은 계산량으로 양호한 회답을 얻을 수 있는 것이 많다. 그 때문에, 패턴 인식이나 데이터 마이닝 등, 다양한 분야에서 응용되고 있다.

인공신경망은 특수한 컴퓨터를 사용하여 구성될 수도 있으나 대부분 일반 컴퓨터에서 응용소프트웨어에 의해 구현된다.

경영학에서의 인공신경망[편집]

인공신경망을 경영학에 응용하고자 하는 연구는 재무, 회계, 마케팅, 생산 등의 분야에서 다양하게 진행되어 왔다. 특히, 재무분야에 대한 응용연구는 매우 활발하게 진행되고 있는데 주가지수예측, 기업신용평가, 환율예측 등의 연구가 진행되고 있다.

인공신경망을 경영학 분야에 응용하기 위해서는 인공신경망의 작동원리에 따라 진행되는데, 기본적인 정보를 입력받아 처리요소에서 처리를 하고 이를 이용하여 가중치를 결정한다. 가중치가 결정되면 이를 이용하여 의사결정을 할 수 있다.[1]

주석[편집]

  1. 《e비즈니스 시대의 경영정보시스템》. 한경사. ISBN 89-89269-34-2

함께 보기[편집]