층 코호몰로지

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

수학에서, 층 코호몰로지(層 cohomology, 영어: sheaf cohomology)는 아벨 군 값을 가진 에 정의되는 호몰로지 이론이다. 대역 단면(global section) 함자유도 함자이다. 체흐 코호몰로지보다 더 추상적이지만, 대수기하학에서 다루기 더 편하다.

정의[편집]

위상 공간이고, 위에 정의된, 아벨 군 값을 가진 이라고 하자. 그렇다면 다음과 같은 대역 단면(영어: global section) 함자를 생각하자.

이는 위의 층들의 범주 로부터 아벨 군의 범주 로 가는 함자이며, 이는 왼쪽 완전 함자임을 보일 수 있다. 또한, 범주 에서는 단사 대상으로의 분해(injective resolution)가 항상 존재함을 보일 수 있다. 따라서 오른쪽 유도 함자 를 정의할 수 있다. 층 코호몰로지를 이 유도 함자들로 정의한다. 즉,

이다.

특이 코호몰로지와의 관계[편집]

국소 축약 가능 공간이라고 하고, 가 임의의 아벨 군이라고 하자. 그렇다면 위의, 값을 가진 상수층(constant sheaf) 의 층 코호몰로지 계수를 가진 특이 코호몰로지 동형이다.

참고 문헌[편집]

바깥 고리[편집]

같이 보기[편집]