모듈러 곡선: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
편집 요약 없음
편집 요약 없음
20번째 줄: 20번째 줄:


== 성질 ==
== 성질 ==
모듈러 곡선의 기하는 잘 알려져 있다. 일반적으로, <math>X(G)</math>의 종수(genus)는 다음과 같다.
모듈러 곡선의 기하는 잘 알려져 있다. 일반적으로, 합동 부분군 <math>G</math>의 콤팩트 모듈러 곡선 <math>X(G)</math>의 종수(genus)는 다음과 같다.<ref name="DS"/>{{rp|68}}
:<math>g=1+\mu_\Gamma/12-r_2/4-r_3/3-r_\infty/2</math>
:<math>g(X(G))=1+|\Gamma(1):G|/12-r_2/4-r_3/3-r_\infty/2</math>
여기서
여기서
* <math>\mu=|\Gamma:G|</math>는 [[부분군의 지표]]다.
* <math>|\Gamma(1):G|</math>는 [[부분군의 지표]]다.
* <math>r_2</math>는 <math>G</math>의 계수가 2인 타원점들의 수이다.
* <math>r_2</math>는 <math>G</math>의 계수가 2인 타원점들의 수이다.
* <math>r_3</math>는 계수가 3인 타원점들의 수이다.
* <math>r_3</math>는 계수가 3인 타원점들의 수이다.
40번째 줄: 40번째 줄:
:<math>g=1+1/12-1/4-1/3-1/2=0</math>
:<math>g=1+1/12-1/4-1/3-1/2=0</math>
이다. 이는 [[리만 구]]에 해당한다.
이다. 이는 [[리만 구]]에 해당한다.

=== &Gamma;(''N'') ===



=== &Gamma;<sub>0</sub>(''N'') ===
=== &Gamma;<sub>0</sub>(''N'') ===

2013년 12월 19일 (목) 11:17 판

수론대수기하학에서, 모듈러 곡선(modular曲線, 영어: modular curve)은 상반평면모듈러 군의 부분군에 대한 몫공간리만 곡면이다.[1] 타원곡선모듈러 군의 이론과 밀접한 관계를 갖는다.

정의

모듈러 군 의 부분군 가 주어졌다고 하자. 만약 충분히 큰 에 대하여 라면, 를 모듈러 군의 합동 부분군(合同部分群, 영어: congruence subgroup)이라고 하고, 이러한 가장 작은 정수 을 합동 부분군 준위(영어: level 레벨[*])라고 한다.

Γ(1)은 저연스럽게 상반평면 에 작용한다. 이를 제약하여, 합동 부분군 또한 상반평면에 작용하게 된다. 이렇게 정의한 몫공간 를 (비콤팩트) 모듈러 곡선 라고 한다. 이는 일반적으로 콤팩트하지 않은 리만 곡면이다.

콤팩트한 모듈러 곡선을 얻기 위해서는 확장 상반평면(영어: extended upper-half plane)

을 정의하자. 그렇다면 콤팩트 모듈러 곡선을 확장 상반평면의 몫공간으로 정의할 수 있다.[1]:58

대표적인 합동 부분군 &Gamma0(N), &Gamma1(N) 및 Γ(N)에 대응하는 콤팩트 모듈러 곡선을 각각 X0(N), X1(N), X(N)이라고 적는다.

타원점과 첨점

합동 부분군 타원점 는 그 점에서의 -작용에 대한 안정자군 가 자명하지 않는 (보다 더 큰) 점이다.[1]:48 이 경우, 의 크기를 타원점 계수(영어: order)라고 한다. 타원점의 계수는 항상 2 또는 3임을 보일 수 있다. 타원점은 의 모듈러 곡선 위의 한 점으로 간주할 수 있다.

합동 부분군 첨점(영어: cusp)은 : 의 원소이다. 즉, 모듈러 곡선을 콤팩트화할 때 추가한 점들이다.

성질

모듈러 곡선의 기하는 잘 알려져 있다. 일반적으로, 합동 부분군 의 콤팩트 모듈러 곡선 의 종수(genus)는 다음과 같다.[1]:68

여기서

  • 부분군의 지표다.
  • 의 계수가 2인 타원점들의 수이다.
  • 는 계수가 3인 타원점들의 수이다.
  • 의 첨점들의 수이다.

Γ(1)

모듈러 군 의 경우, 이에 대응하는 모듈러 곡선 리만 구 동형이다. 이 동형사상은 j-불변량에 의하여 주어진다.

이는 종수 공식으로 다음과 같이 계산할 수 있다. Γ(1)의 타원점과 첨점은 다음과 같다.

  • 계수가 2인 타원점 1개 ()
  • 계수가 3인 타원점 1개 ()
  • 첨점 1개 ()

를 가진다. 따라서

이다. 이는 리만 구에 해당한다.

Γ(N)

Γ0(N)

Γ0(N)의 경우, 타원점과 첨점들의 수는 다음과 같다.

여기서 오일러 함수이고, 르장드르 기호이다. 의 인수라는 뜻이다. 소인수라는 뜻이다.

참고 문헌

  1. Diamond, Fred; Jerry Shurman (2005). 《A first course in modular forms》. Graduate Texts in Mathematics 228. Springer. doi:10.1007/b138781. ISBN 978-0-387-23229-4. ISSN 0072-5285. Zbl 1062.11022.