켤레전치

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

선형대수학에서, 어떤 복소수 행렬켤레 전치(-轉置, 영어: conjugate transpose) 또는 에르미트 전치(-轉置, 영어: Hermitian transpose) 또는 에르미트 수반(-隨伴, 영어: Hermitian adjoint) 또는 수반 행렬(隨伴行列, 영어: adjoint matrix) 또는 딸림 행렬(-行列)은 그 행렬의 전치 행렬을 취한 뒤 성분별 켤레 복소수를 취하여 얻는 행렬이다. 실수 행렬의 전치 행렬과 복소수의 켤레 복소수의 공통적인 일반화이다. 기호는 또는 또는 .

정의[편집]

복소수 행렬 켤레 전치는 다음과 같은 행렬 이다.

즉, 각 위치의 성분은 다음과 같다.

보다 일반적으로, 복소수 내적 공간 사이의 선형 변환 켤레 전치 선형 변환(영어: adjoint linear transformation)는 다음 조건을 만족시키는 선형 변환 이다. (이는 많아야 하나 존재하며, 유한 차원 내적 공간의 경우 항상 존재한다.)

  • 임의의 에 대하여,

성질[편집]

켤레 전치는 2차 반쌍선형 반대 동형이다. 즉, 다음과 같은 항등식이 성립한다.

유한 차원 내적 공간의 경우, 켤레 전치 선형 변환은 켤레 전치 행렬의 개념과 일치한다. 즉, 서로 켤레 전치 선형 변환은 서로 켤레 전치 행렬을 갖는다. 반대로, 행렬의 왼쪽 곱셈 선형 변환의 켤레 전치 선형 변환은 그 켤레 전치 행렬의 왼쪽 곱셈 선형 변환이다. 즉, 행렬 및 벡터 에 대하여 다음이 성립한다. (여기서 좌변은 , 우변은 의 표준적인 내적이다.)

[편집]

만약

이라면,

이다.

관련 개념[편집]

켤레 전치 행렬을 사용하여 정의할 수 있는, 복소수 행렬의 성질들은 다음과 같다.

같이 보기[편집]

참고 문헌[편집]

  • Hoffman, Kenneth (1971년 4월 1일). 《Linear Algebra》 (영어) 2판. Prentice Hall. ISBN 0-13-536797-2. 

외부 링크[편집]