수학적 귀납법

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

수학적 귀납법(數學的歸納法, 영어: mathematical induction)은 수학에서 어떤 주장이 모든 자연수에 대해 성립함을 증명하기 위해 사용되는 방법이다. 무한개의 명제를 함께 증명하기 위해, 먼저 '첫 번째 명제가 참임을 증명'하고, 그 다음에는 '명제들 중에서 어떤 하나가 참이면 언제나 그 다음 명제도 참임을 증명'하는 방법으로 이루어진다.

보다 일반적으로, 이는 모든 서수집합에 대해 초한귀납법으로 확장할 수 있으며, 임의의 기초관계에 대해 구조적 귀납법으로 확장할 수도 있다. 수학적 귀납법은 자연수 집합에서 정렬순서원리와 동치이다.

수학적 귀납법은 이름과는 달리 귀납적 논증이 아닌 연역적 논증에 속하며, 따라서 이는 명확하고 엄밀한 증명 방법이다. 그러나 의미에 혼란이 없을 때에는 수학적 귀납법을 줄여서 귀납법이라고 부르기도 한다.


[편집]


역사[편집]

함께 보기[편집]

주석[편집]