구성 가능 전체

위키백과, 우리 모두의 백과사전.
(폰 노이만 전체에서 넘어옴)
이동: 둘러보기, 검색

집합론에서, 폰 노이만 전체(von Neumann全體, 영어: von Neumann universe) 는 모든 집합을 반복된 멱집합 연산을 통하여 위계로 배열한 집합이다. 이 구성에서, 멱집합 대신 1차 논리로 정의 가능한 부분 집합들로 구성된 구성 가능 멱집합(構成可能冪集合, 영어: constructible power set)의 개념을 사용하면 대신 구성 가능 전체(構成可能全體, 영어: constructible universe) 을 얻는다. 구성 가능 전체에서는 일반화 연속체 가설이나 다이아몬드 원리와 같은 여러 명제들이 성립한다. 구성 가능성 공리(構成可能性公理, 영어: axiom of constructibility, 기호 )는 모든 집합이 구성 가능하다는 명제이다.

정의[편집]

구성 가능 멱집합[편집]

모임 이 주어졌다고 하자. 그렇다면, 1항 관계 가 추가된 언어 모형 를 생각하자. 이 모형에서 의 해석은 이며, 의 해석은 표준적이다 (즉, 추이적 모형이다).

그렇다면, 집합 -구성 가능 멱집합(-構成可能冪集合, 영어: -constructible power set) 는 유한 개의 매개 변수를 이용하여 언어의 1차 논리 술어로 정의할 수 있는 부분 집합들의 집합족이다. 즉, 이항 관계 및 1항 관계 에 대한, 개의 자유 변수를 갖는 1차 논리 술어 에 대하여, 다음과 같다.

폰 노이만 전체와 구성 가능 전체[편집]

집합에 대한 연산 추이적 집합 가 주어졌다고 하자. 그렇다면, 초한 귀납법을 사용하여, 임의의 순서수 에 대하여 다음과 같은 집합들을 정의할 수 있다.

또한, 다음과 같은 모임을 정의할 수 있다.

여기서 는 모든 순서수모임이다.

이제, 다음을 생각하자.

  • (멱집합 연산)일 때, 로 표기하며, 폰 노이만 전체(영어: von Neumann universe)라고 한다.
  • (정의 가능 멱집합 연산)일 때, 로 표기하며, -구성 가능 집합(영어: -constructible universe)이라고 한다. 흔히 일 경우 로 표기하며, 일 경우 흔히 로 표기한다.

(일부 문헌에서는 를 대신 로 정의한다. 물론, 만약 이라면 이는 차이가 없다.)

의 원소를 구성 가능 집합(構成可能集合, 영어: constructible set)이라고 한다.

의 차이에 대하여 가나모리 아키히로(일본어: 金森 晶 (かなもり あきひろ))는 다음과 같이 적었다.

생성 집합으로 모형을 구성하는 대수학적 아이디어를 실현하며, 술어로 간주하여 모형을 구성하는 아이디어를 실현한다.
While realizes the algebraic idea of building up a model starting from a basis of generators, realizes the idea of building up a model using construed as a predicate.
 
[1]:235

성질[편집]

선택 공리를 추가한 체르멜로-프렝켈 집합론을 가정하자.

구성 가능 멱집합[편집]

일반적으로 다음이 성립한다.

물론, 만약 라면

이다.

항상

이다. 특히, 만약 유한 집합이라면 임의의 에 대하여

이다.

는 유한 합집합 · 유한 교집합 · 여집합에 대하여 닫혀 있어, 의 부분 불 대수를 이룬다.

구성 가능 전체[편집]

항상 다음이 성립한다.

그러나 일 필요는 없으며, 이거나 일 필요는 없다.

각 순서수 에 대하여

이다. 또한, 만약 가 유한하다면 이다.

체르멜로-프렝켈 집합론에서는 정칙성 공리로 인하여 는 모든 집합의 모임과 같으며, 집합 계수 는 다음과 같은 순서수이다.

즉, 가 부분 집합으로 등장하는 최초의 단계이다.

구성 가능성 공리는 모든 집합이 구성 가능하다는 명제이다. 즉, 이라는 명제이다. 만약 구성 가능성 공리가 성립하고, 또한 순서수 에 대하여 라면,

이다. (예를 들어, 이는 도달 불가능한 기수일 경우 성립한다.)

집합론적 성질[편집]

임의의 순서수 에 대하여 는 (심지어 고유 모임이어도) 집합이다.

그러나 고유 모임이며, 집합이 아니다. 이를 칸토어 역설이라고 한다.

모형 이론적 성질[편집]

는 (모든 집합을 포함하므로) 체르멜로-프렝켈 집합론의 표준 모형이다. 최소 무한 순서수로 쓰면, 는 계승적 유한 집합(영어: hereditarily finite set, 다른 계승적 유한 집합만을 원소로 포함하는 유한 집합)들의 집합이 되며, 이는 무한 공리를 가정하지 않는 집합론의 모형을 이룬다. 도달 불가능한 기수일 경우 선택 공리를 추가한 체르멜로-프렝켈 집합론의 모형이며, 모스-켈리 집합론의 모형이다. 이러한 꼴의 그로텐디크 전체라고 한다.

선택 공리를 추가한 체르멜로-프렝켈 집합론의 표준 모형이며, 폰 노이만 전체 내부 모형이다. 특히, 에서 선택 공리가 성립하지 않아도, 선택 공리를 만족시킨다. 이는 은 정의 가능한 정렬 순서가 존재하기 때문이다. 구체적으로, 의 정렬 순서가 주어졌다면, 의 원소는 의 유한 개의 원소들 및 (사전식으로 정렬되는) 1차 논리 술어로서 명시되므로, 이로서 정렬할 수 있다. 이러한 정렬 순서가 주어졌다면, 선택 공리에서 요구되는 선택 함수는 단순히 이 정렬 순서에 대한 최솟값으로 정의할 수 있다.

또한, 에서는 다음 명제들이 성립한다.

은 다음 조건을 만족시키는, 체르멜로-프렝켈 집합론의 가장 작은 표준 모형이다.

  • 의 내부 모형이다.
  • 모든 순서수들을 포함한다.

다시 말해, 체르멜로-프렝켈 집합론 + 구성 가능성 공리로부터, 선택 공리를 비롯한 위 명제들을 증명할 수 있다. 특히, 구성 가능성 공리가 큰 기수들의 존재와 모순되기 때문에, 플라톤주의수리철학 아래 보통 구성 가능성 공리는 집합론의 공리로 가정되지 않는다. 이에 대하여 퍼넬러피 매디(영어: Penelope Maddy)는 다음과 같이 적었다.

[…] 는 어디서, 왜 이 잘못되는지에 대한 자세한 이론을 제공한다. 실버 [의 존재가 를 함의함을 증명한 수학자] 이전에도 많은 수학자들은 이라고 믿었지만, 실버 이후 이들은 왜 이들이 이러한 믿음을 가지는지 알게 되었다.

[…] yields a rich explanatory theory of exactly where and why goes wrong. Before Silver, many mathematicians believed that , but after Silver they knew why.

 
[2]:506, §IV

마찬가지로, 이에 대하여 가나모리 아키히로(일본어: 金森 晶 (かなもり あきひろ))와 메나헴 마기도르(히브리어: מנחם מגידור)는 다음과 같이 적었다.

따라서, 충분히 큰 기수가 존재한다고 가정하면, 의 균등 생성에 대한 다양한 강한 내재적 구조적 묘사가 가능하며, 이에 따라 은 매우 얇은 내적 모형임을 알 수 있다 — 헐벗은 폐허의 성가대석(聖歌隊席)들이 달라붙은 가냘픈 생명선(生命線, 즉 순서수모임)에 불과하다.

Thus, in the presence of a suitably large cardinal in the universe, many strong results about the uniform generation of L now follow from this intrinsic structural characterization, and L takes on the character of a very thin inner model indeed, bare ruined choirs appended to the slender life-giving spine which is the class of ordinals.

 
[3]:131, §7

역사[편집]

1889년에 주세페 페아노는 참 또는 모든 대상들의 모임라틴어: vērum 베룸[*](참)의 머리글자 V로 나타내었다.[4]:VIII, XI (페아노는 명제와 이로부터 정의되는 모임을 구별하지 않았다.)

이후 1928년에 존 폰 노이만초한 귀납법을 도입하였으나,[5][6] 폰 노이만은 구성 가능 전체를 도입하지 않았다.[7]:279, §4.10에른스트 체르멜로가 1930년에 이를 사용하여 폰 노이만 전체 를 최초로 도입하였다.[8]:36–40[7]:270, §4.9

1935년 가을에 쿠르트 괴델은 구성 가능 전체 을 도입하였으며,[7]:280, §4.10 이를 통하여 이 선택 공리일반화 연속체 가설체르멜로-프렝켈 집합론과 모순되지 않음을 증명하였다. 이 결과는 1938년에 출판되었다.[9][1]:234

는 1956년에 허이널 언드라스(헝가리어: Hajnal András, 1931~)가 도입하였으며,[10][11][1]:234 는 1957년에 아즈리엘 레비가 도입하였다.[12][13][1]:235

이후 1972년에 로널드 비언 젠슨(영어: Ronald Björn Jensen)이 구성 가능 전체의 미세 구조(영어: fine structure)의 이론을 젠슨 위계(영어: Jensen hierarchy)를 통해 정립하였다.[14]

참고 문헌[편집]

  1. Kanamori, Akihiro (2006). “Levy and set theory” (PDF). 《Annals of Pure and Applied Logic》 (영어) 140: 233–252. doi:10.1016/j.apal.2005.09.009. Zbl 1089.03004. 
  2. Maddy, Penelope (1988년 6월). “Believing the axioms I” (PDF). 《Journal of Symbolic Logic》 (영어) 53 (2): 481–511. doi:10.2307/2274520. JSTOR 2274520. 
  3. Kanamori, Akihiro; Magidor, Menachem (1978). 〈The evolution of large cardinal axioms in set theory〉 (PDF). Müller, Gert H.; Scott, Dana S. 《Higher set theory: proceedings, Oberwolfach, Germany, April 13–23, 1977》. Lecture Notes in Mathematics (영어) 669. Springer-Verlag. 99–275쪽. doi:10.1007/BFb0103104. ISBN 978-3-540-08926-1. ISSN 0075-8434. 
  4. Peano, Ioseph (1889). 《Arithmetices principia: nova methodo exposita》 (라틴어). 토리노: Ediderunt fratres Bocca, regis bibliopolae. 
  5. von Neumann, J. (1928). “Die Axiomatisierung der Mengenlehre”. 《Mathematische Zeitschrift》 (독일어) 27: 669–752. doi:10.1007/bf01171122. 
  6. von Neumann, J. (1928). “Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen Mengenlehre”. 《Mathematische Annalen》 (독일어) 99 (1): 373–391. doi:10.1007/bf01459102. ISSN 0025-5831. 
  7. Moore, Gregory H. (1982). 《Zermelo’s axiom of choice: its origins, development, and influence》. Studies in the History of Mathematics and Physical Sciences (영어) 8. Springer-Verlag. doi:10.1007/978-1-4613-9478-5. ISBN 978-1-4613-9480-8. ISSN 0172-570X. 
  8. Zermelo, Ernst (1930). “Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre” (PDF). 《Fundamenta Mathematicae》 (독일어) 16: 29–47. 
  9. Gödel, Kurt (1938). “The consistency of the axiom of choice and of the generalized continuum-hypothesis”. 《Proceedings of the National Academy of Sciences of the United States of America》 (영어). doi:10.1073/pnas.24.12.556. JFM 64.0035.01. JSTOR 87239. PMC 1077160. PMID 16577857. Zbl 0020.29701. 
  10. Hajnal, András (1956). “On a consistency theorem connected with the generalized continuum problem”. 《Zeitschrift für Mathematische Logik und Grundlagen der Mathematik》 (영어) 2 (8–9): 131–136. doi:10.1002/malq.19560020804. 
  11. Hajnal, András (1961). “On a consistency theorem connected with the generalized continuum problem”. 《Acta Mathematica Academiae Scientiarum Hungaricae》 (영어) 12 (3): 321–376. doi:10.1007/BF02023921. ISSN 0001-5954. 
  12. Lévy, Azriel (1957). “Indépendance conditionnelle de V=L et d’axiomes qui se rattachent au système de M. Gödel”. 《Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences》 (프랑스어) 245: 1582–1583. 
  13. Lévy, Azriel (1960). “A generalization of Gödel’s notion of constructibility”. 《The Journal of Symbolic Logic》 (영어) 25: 147–155. 
  14. Jensen, Ronald Björn (1972년 8월). “The fine structure of the constructible hierarchy”. 《Annals of Mathematical Logic》 (영어) 4 (3): 229–308. doi:10.1016/0003-4843(72)90001-0. 

바깥 고리[편집]