대칭 작용소

위키백과, 우리 모두의 백과사전.

작용소 이론에서 대칭 작용소(對稱作用素, 영어: symmetric operator)는 스스로의 정의역 위에서, 스스로가 에르미트 수반과 일치하는 작용소이다.[1] 유한 차원에서의 에르미트 행렬을 일반화한 개념이다. 자기 수반 작용소의 개념과 달리, 그 정의역에르미트 수반정의역보다 더 작을 수 있다.

정의[편집]

다음이 주어졌다고 하자.

  • (실수체 또는 복소수체 가운데 하나)
  • -위상 벡터 공간
  • 조밀 부분 벡터 공간
  • -선형 변환

만약 가 다음 조건을 만족시킨다면, 대칭 작용소라고 한다.

여기서

  • 연속 쌍대 공간이다.
  • 일 경우 복소켤레이며, 일 경우 항등 함수이다.
  • 사이의 자연스러운 곱 (즉, 연속 범함수의 값매김)이다.

힐베르트 공간의 경우[편집]

힐베르트 공간이라고 하자. 리스 표현 정리에 따라 이다. 이 경우, 대칭 작용소는 다음과 같이 여러 가지로 정의될 수 있으나, 이 정의들은 모두 서로 동치이다.

-힐베르트 공간 조밀 부분 벡터 공간 에 정의된 선형 변환

에 대하여 다음 조건들이 서로 동치이다.[1]:58–59

  • 는 대칭 작용소이다.
  • 모든 에 대하여, 이다.
  • 이며, 모든 에 대하여 이다. 여기서 에르미트 수반이다.

힐베르트 공간 위의 대칭 작용소의 경우 항상 이며, 따라서 역시 조밀 집합이다.

대칭 작용소 의 경우, 일 필요는 없다. 만약 이 조건을 추가한다면, 자기 수반 작용소의 개념을 얻는다.

성질[편집]

함의 관계[편집]

힐베르트 공간 의 조밀 부분 벡터 공간 위에 정의된 작용소 들의 종류에 대하여, 다음과 같은 포함 관계가 성립한다.

자기 수반 작용소 대칭 작용소 작용소
유계 자기 수반 작용소 = 유계 대칭 작용소 유계 작용소

여기서 둘째 줄(유계 작용소)의 경우 이다. 즉, 헬링거-퇴플리츠 정리(영어: Hellinger–Toeplitz theorem)에 따르면, 정의역이 힐베르트 공간 전체인 대칭 작용소는 유계 작용소이다.[1]:67

유한 차원 힐베르트 공간 위의 작용소 에 대하여, 다음이 서로 동치이다.

결점 지표[편집]

복소수 힐베르트 공간 위의 대칭 작용소

를 생각하자. 즉, 부분 공간

이 존재한다. 이제 다음과 같은 두 부분 공간을 정의하자.

이들은 직교 여공간이므로 닫힌집합이며, 특히 힐베르트 공간을 이룬다. 그 차원

결점 지표(缺點指標, 영어: deficiency index)라고 한다.

폰 노이만 공식(영어: von Neumann formula)에 따르면, 다음이 성립한다.

대칭 확장[편집]

-힐베르트 공간 위의 대칭 작용소 대칭 확장(對稱擴張, 영어: symmetric extension)은 다음을 만족시키는 작용소 이다. 이 경우 라고 표기하자.

즉, 이는

인 조건과 같다.

대칭 확장 관계를 통해, 위의 대칭 작용소들의 집합부분 순서 집합을 이룬다. 대칭 작용소의 대칭 확장은 일반적으로 유일하지 않으며, 존재하지 않을 수도 있다.

라고 추가로 가정하자. 대칭 작용소 의 자기 수반 확장들은 다음과 같은 유니터리 작용소일대일 대응한다.[1]:81–84

특히, 가 자기 수반 확장을 가질 필요 충분 조건은 두 결점 지표가 같은 것이다.

또한, 가 유일한 자기 수반 확장을 가질 필요 충분 조건은 두 결점 지표가 모두 0인 것이다.

[편집]

다음을 생각하자.

그렇다면, 는 대칭 작용소이다. 이 경우, 은 다음과 같은 미분 방정식의 해의 공간이다.

이는 각각 1차원이며, 구체적으로

이다. 따라서 는 자기 수반 연산자가 아니지만, 자기 수반 확장을 갖는다. 자기 수반 확장의 공간은 과 동형이다.

구체적으로,

을 생각하자. 이는 의 대칭 확장인데, 이 경우 이므로, 유일한 자기 수반 확장을 갖는다.

참고 문헌[편집]

  1. Teschl, Gerald (2009). 《Mathematical methods in quantum mechanics with applications to Schrödinger operators》. Graduate Studies in Mathematics (영어) 99. American Mathematical Society. ISBN 978-0-8218-4660-5. MR 2499016. Zbl 1166.81004. 
  • 곽도영 (2010년 2월 5일). 《공업수학 탐구》. 교우사. ISBN 978-89-8172-378-1. 
  • Berezin, F. A.; M. A. Shubin (1991). 《The Schrödinger equation》 (영어). Klüwer. 
  • Hall, B. C. (2013). 《Quantum theory for mathematicians》 (영어). New York: Springer. 
  • Reed, M.; Simon, Barry (1972). 《Methods of Mathematical Physics, vol. 2》 (영어). Academic Press. 
  • Bonneau, Guy; Jacques Faraut, Galliano Valent (2001). “Self-adjoint extensions of operators and the teaching of quantum mechanics”. 《American Journal of Physics》 (영어) 69: 322–331. arXiv:quant-ph/0103153. Bibcode:2001AmJPh..69..322B. doi:10.1119/1.1328351. 

외부 링크[편집]