종분화 실험

위키백과, 우리 모두의 백과사전.

맥아당전분 배지에서 두 줄의 초파리를 사육하는 동종성 종분화 실험

종분화에 대한 실험은 잡종화, 강화, 창시자 효과 등 모두에 대해 수행되었다. 대부분의 실험은 파리, 특히 초파리로 이루어졌다.[1] 그러나 더 최근의 연구에서는 효모, 곰팡이, 심지어 바이러스까지도 이용하여 실험했다.

실험실 실험(Laboratory experiment)은 개체군 크기가 작고 세대가 제한되어 있기 때문에 변종 종분화(동종 및 주변)에 도움이 되지 않는다고 제안되었다.[2] 자연 연구에서 얻은 대부분의 추정치는 종분화에 수십만 년에서 수백만 년이 걸린다는 것을 나타낸다.[3] 다른 한편으로, 많은 종은 3000세대 미만에서 동종분화를 하고 있는 원양, 해저 지역에서 산란하는 유럽 가자미(Platichthys flesus)와 같이 더 빠르고 최근에 종분화한 것으로 생각된다.[4]

실험 목록[편집]

현재 확인할 수 있는 6개의 출판물이 종분화에 대한 실험적 연구를 편집, 검토 및 분석하려고 시도했다.

  1. 1985년 존 링고, 데이비드 우드, 로버트 록웰, 해롤드 다우즈[5]
  2. 1993년 William R. Rice 와 Ellen E.[6]
  3. 2002년 Ann-Britt Florin 과 Anders Ödeen.[7]
  4. 2002년 Mark Kirkpatrick 과 Virginie Ravigné.[8]
  5. 2004년 Jerry A. Coyne 및 H. Allen Orr[1]
  6. 2009년 제임스 D. 프라이.[9]

[편집]

이 표는 이 간행물에서 검토한 연구 및 데이터를 요약한 것이다. 또한 여러 현대적 실험을 참조하며 포괄적이지 않다.

표에서 세대 열에서 세미콜론으로 구분된 여러 숫자는 여러 실험이 수행되었음을 나타낸다. 복제(괄호 안)는 실험에 사용된 모집단의 수, 즉 실험이 복제된 횟수를 나타낸다. 다양한 유형의 선택이 실험 모집단에 부과되었으며 선택 유형 열로 표시된다. 각 실험의 음성 또는 양성 결과는 생식 분리 컬럼에 의해 제공된다.

접합 전 생식 격리(Pre-zygotic)는 개체군에서 생식하는 개체가 자손을 낳을 수 없음을 의미한다(효과적으로 긍정적인 결과). 접합 후 격리(Post-zygotic)는 번식하는 개체가 자손을 낳을 수 있었지만 불임 상태이거나 생존할 수 없었음을 의미한다(양성 결과도 마찬가지임). 음성 결과는 "없음"으로 표시된다. 즉, 실험에서 생식적 격리가 발생하지 않았다는 뜻이다.

표의 내용과 용어는 영문판을 그대로 사용하였다.

종분화 실험에 대한 표[1][10][11][12][9]
특성 세대 테스트 선택형 유전적 부동 생식적 격리 출처 실험한 해
Drosophila melanogaster Escape response 18 Vicariant, reinforcement, parapatric/

sympatric

Indirect; divergent Yes Pre-zygotic Grant & Mettler[13] 1969
D. melanogaster Locomotion 112 Vicariant Indirect; divergent No Pre-zygotic Burnet & Connolly[14] 1974
D. melanogaster Temperature, humidity 70–130 Vicariant Indirect; divergent Yes Pre-zygotic Kilias et al.[15] 1980
D. melanogaster DDT adaptation 600 [25 years, +15 years] Vicariant Direct No Pre-zygotic Boake et al.[16] 2003
D. melanogaster 17, 9, 9, 1, 1, 7, 7, 7, 7 Vicariant; parapatric/

sympatric

Direct, divergent Pre-zygotic in vicariance; none with gene flow Barker & Karlsson[17] 1974
D. melanogaster 40; 50 Reinforcement Direct; divergent Pre-zygotic Crossley[18] 1974
D. melanogaster Locomotion 45 Vicariant Direct; divergent No None van Dijken & Scharloo[19][20] 1979
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Wallace[21] 1953
D. melanogaster 36; 31 Reinforcement Direct; divergent Pre-zygotic Knight[22] 1956
D. melanogaster EDTA adaptation 25, 25, 25, 14 Semi-allopatric, reinforcement Indirect; divergent No Post-zygotic Robertson[23][24] 1966
D. melanogaster 25 (8) Vicariant; reinforcement; parapatric; sympatric Direct None Hostert[25] 1997
D. melanogaster Abdominal chaeta

number

21–31 Vicariant Direct Yes None Santibanez & Waddington[26] 1958
D. melanogaster Sternopleural chaeta number 32 Vicariant, reinforcement, parapatric/

sympatric

Direct No None Barker & Cummins[27] 1969
D. melanogaster Phototaxis, geotaxis 20 Vicariant No None Markow[28][29] 1975; 1981
D. melanogaster Peripatric Yes Rundle et al.[30] 1998
D. melanogaster Vicariant; peripatric Yes Mooers et al.[31] 1999
D. melanogaster 12 Reinforcement Divergent Pre-zygotic Thoday & Gibson[32] 1962
D. melanogaster None Thoday & Gibson[33][34] 1970; 1971
D. melanogaster 16 Reinforcement Indirect None Spiess & Wilke[35] 1954
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Ehrman[36][37][38][39] 1971; 1973; 1979; 1983
D. melanogaster Sternopleural chaeta number 5; 27; 27; 1; 1; 1; 1; 1 Parapatric/

sympatric

None Chabora[40] 1968
D. melanogaster None Scharloo[41] 1967
D. melanogaster 1, 1 Coyne & Grant[42] 1972
D. melanogaster 25 Rice[43] 1985
D. melanogaster 25 Disruptive Pre-zygotic Rice & Salt[44] 1988
D. melanogaster 35; 35 Sympatric Pre-zygotic Rice & Salt[45] 1990
D. melanogaster NaCl and CuSO4 levels in food [3 years in allopatry, 1 in sympatry] Allopatric; reinforcement; sympatric Pre-zygotic in allopatry, none in sympatry Wallace[46] 1982
D. melanogaster Reinforcement Ehrman et al.[47] 1991
D. melanogaster Reinforcement Fukatami & Moriwaki[48] 1970
Drosophila simulans Scutellar bristles, development speed, wing width; desiccation resistance, fecundity, ethanol resistance; courtship display, re-mating speed, lek behavior; pupation height, clumped egg laying, general activity [3 years] Vicariant; peripatric Yes Post-zygotic Ringo et al.[49] 1985
Drosophila paulistorum 131; 131 Reinforcement Direct Pre-zygotic Dobzhansky et al.[50] 1976
D. paulistorum [5 years] Vicariant Dobzhansky and Pavlovsky[51] 1966
Drosophila willistoni pH adaptation 34–122 Vicariant Indirect; divergent No Pre-zygotic Kalisz & Cordeiro[52] 1980
Drosophila pseudoobscura Carbohydrate source 12 Vicariant Indirect Yes Pre-zygotic Dodd[53] 1989
D. pseudoobscura Temperature adaptation 25–60 Vicariant Direct Ehrman[54][55][56][57][58] 1964;

1969

D. pseudoobscura Phototaxis, geotaxis 5–11 Vicariant Indirect No Pre-zygotic del Solar[59] 1966
D. pseudoobscura Vicariant; peripatric Pre-zygotic Powell[60][61] 1978; 1985
D. pseudoobscura Peripatric; vicariant Yes Galiana et al.[62] 1993
D. pseudoobscura Temperature photoperiod; food 37 (78) [33–34 months] Vicariant Divergent Yes None Rundle[63] 2003
D. pseudoobscura &

Drosophila persimilis

22; 16; 9 Reinforcement Direct; divergent Pre-zygotic Koopman[64] 1950
D. pseudoobscura &

D. persimilis

18 (4) Direct Pre-zygotic Kessler[65] 1966
Drosophila mojavensis 12 Direct Pre-zygotic Koepfer[66] 1987
D. mojavensis Development time 13 Divergent Yes None Etges[67] 1998
Drosophila adiastola Peripatric Yes Pre-zygotic Arita & Kaneshiro[68] 1974
Drosophila silvestris Peripatric Yes Ahearn[69] 1980
Musca domestica Geotaxis 38 Vicariant Indirect No Pre-zygotic Soans et al.[70] 1974
M. domestica Geotaxis 16 Vicariant Direct; divergent No Pre-zygotic Hurd & Eisenburg[71] 1975
M. domestica Peripatric Yes Meffert & Bryant[72] 1991
M. domestica Regan et al.[73] 2003
Bactrocera cucurbitae Development time 40–51 Divergent Yes Pre-zygotic Miyatake & Shimizu[74] 1999
Zea mays 6; 6 Reinforcement Direct; divergent Pre-zygotic Paterniani[75] 1969
Drosophila grimshawi Peripatric Jones, Widemo, & Arrendal[76] N/A
Saccharomyces cerevisiae Leu & Murry[77] 2006
D. melanogaster Reinforcement Harper & Lambert[78] 1983
Tribolium castaneum Pupal weight 15 (6) Disruptive Halliburton & Gall[79] 1983
D. melanogaster Geotaxis Divergent Lofdahl et al.[80] 1992
D. pseudoobscura [10 years] Moya et al.[81] 1995
Neurospora Divergent Dettman et al.[82] 2008
S. cerevisiae 500 Divergent Dettman et al.[83] 2007
Sepsis cynipsea 35 Martin & Hosken[84] 2003
D. melanogaster Wigby & Chapman[85] 2006
D. pseudoobscura Sexual conflict 48–52 (4; 4; 4) Bacigalupe et al.[86] 2007
D. serrata Rundle et al.[87] 2005
Drosophila serrata & D. birchii Mate recognition 9 (3; 3) Reinforcement Natural Pre-zygotic Higgie et al.[88] 2000
Enterobacteria phage λ Escherichia coli receptor exploitation 35 cycles (6) Vicariant, sympatric Pre-zygotic Meyer et al.[89] 2016
Tetranychus urticae Resistance to host plant toxin Overmeer[90] 1966
T. urticae Resistance to host plant toxin Fry[91] 1999
Helianthus annus × H. petiolaris and H. anomalus Hybrid Rieseburg et al.[92] 1996
S. cerevisiae Greig et al.[93] 2002
D. melanogaster Life history Ghosh & Joshi[94] 2012
Drosophila subobscura Mate behavior Bárbaro et al.[95] 2015
Digital organisms ~42,000; ~850 (20) Ecological Post-zygotic Anderson & Harmon[96] 2014
Schizosaccharomyces pombe Complete reproductive isolation Seike et al.[97] 2015
D. pseudoobscura Courtship song 130 Debelle et al.[98] 2014
Callosobruchus maculatus 40 (16) Debelle et al.[99] 2010

각주[편집]

  1. , Sinauer Associates  |제목=이(가) 없거나 비었음 (도움말)
  2. Florin, Ann-Britt & Ödeen, Anders (2002), “Laboratory environments are not conducive for allopatric speciation”, 《Journal of Evolutionary Biology》 15 (1): 10–19, doi:10.1046/j.1420-9101.2002.00356.x 
  3. Coyne, Jerry A.; Orr, H. Allen (1997), “"Patterns of Speciation in Drosophila" Revisited”, 《Evolution》 51 (1): 295–303, doi:10.1111/j.1558-5646.1997.tb02412.x, PMID 28568795 
  4. Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf; Merilä, Juha (2017), “Extraordinarily rapid speciation in a marine fish” (PDF), 《PNAS》 114 (23): 6074–6079, doi:10.1073/pnas.1615109114, PMC 5468626, PMID 28533412 
  5. Ringo, John; Wood, David; Rockwell, Robert; Dowse, Harold (1985), “An Experiment Testing Two Hypotheses of Speciation”, 《The American Naturalist》 126 (5): 642–661, doi:10.1086/284445, S2CID 84819968 
  6. Rice, William R. & Hostert, Ellen E. (1993), “Laboratory Experiments on Speciation: What Have We Learned in 40 Years?”, 《Evolution》 47 (6): 1637–1653, doi:10.1111/j.1558-5646.1993.tb01257.x, PMID 28568007, S2CID 42100751 
  7. Florin, Ann-Britt & Ödeen, Anders (2002), “Laboratory environments are not conducive for allopatric speciation”, 《Journal of Evolutionary Biology》 15 (1): 10–19, doi:10.1046/j.1420-9101.2002.00356.x 
  8. Kirkpatrick, Mark & Ravigné, Virginie (2002), “Speciation by Natural and Sexual Selection: Models and Experiments”, 《The American Naturalist》 159: S22–S35, doi:10.1086/338370, PMID 18707367, S2CID 16516804 
  9. Fry, James D. (2009). Laboratory Experiments on Speciation. In Garland, Theodore & Rose, Michael R. "Experimental Evolution: Concepts, Methods, and Applications of Selection Experiments". Pp. 631–656. doi 10.1525/california/9780520247666.003.0020
  10. Rice, William R. & Hostert, Ellen E. (1993), “Laboratory Experiments on Speciation: What Have We Learned in 40 Years?”, 《Evolution》 47 (6): 1637–1653, doi:10.1111/j.1558-5646.1993.tb01257.x, PMID 28568007, S2CID 42100751 
  11. Kirkpatrick, Mark & Ravigné, Virginie (2002), “Speciation by Natural and Sexual Selection: Models and Experiments”, 《The American Naturalist》 159: S22–S35, doi:10.1086/338370, PMID 18707367, S2CID 16516804 
  12. Florin, Ann-Britt & Ödeen, Anders (2002), “Laboratory environments are not conducive for allopatric speciation”, 《Journal of Evolutionary Biology》 15 (1): 10–19, doi:10.1046/j.1420-9101.2002.00356.x 
  13. Grant, B. S. & Mettler, L. E. (1969), “Disruptive and stabilizing selection on the" escape" behavior of Drosophila melanogaster”, 《Genetics》 62 (3): 625–637, doi:10.1093/genetics/62.3.625, PMC 1212303, PMID 17248452 
  14. Burnet, B. & Connolly, K. (1974). Activity and sexual behavior in Drosophila melanogaster. In Abeelen, J. H. V. F. (eds). The Genetics of Behaviour. North-Holland, Amsterdam. Pp. 201–258.
  15. Kilias, G., Alahiotis, S. N., & Pelecanos, M. (1980), “A Multifactorial Genetic Investigation of Speciation Theory Using Drosophila melanogaster”, 《Evolution》 34 (4): 730–737, doi:10.2307/2408027, JSTOR 2408027, PMID 28563991 
  16. Boake, C. R. B., Mcdonald, K., Maitra, S., Ganguly, R. (2003), “Forty years of solitude: life-history divergence and behavioural isolation between laboratory lines of Drosophila melanogaster”, 《Journal of Evolutionary Biology》 16 (1): 83–90, doi:10.1046/j.1420-9101.2003.00505.x, PMID 14635883 
  17. Barker, J. S. F. & Karlsson, L. J. E. (1974), “Effects of population size and selection intensity on responses to disruptive selection in Drosophila melanogaster”, 《Genetics》 78 (2): 715–735, doi:10.2307/2407287, JSTOR 2407287, PMC 1213230, PMID 4217303 
  18. Crossley, Stella A. (1974), “Changes in Mating Behavior Produced by Selection for Ethological Isolation Between Ebony and Vestigial Mutants of Drosophila melanogaster”, 《Evolution》 28 (4): 631–647, doi:10.1111/j.1558-5646.1974.tb00795.x, PMID 28564833, S2CID 35867118 
  19. van Dijken, F. R. & Scharloo, W. (1979), “Divergent selection on locomotor activity in Drosophila melanogaster. I. Selection response”, 《Behavior Genetics》 9 (6): 543–553, doi:10.1007/BF01067350, PMID 122270, S2CID 39352792 
  20. van Dijken, F. R. & Scharloo, W. (1979), “Divergent selection on locomotor activity in Drosophila melanogaster. II. Test for reproductive isolation between selected lines”, 《Behavior Genetics》 9 (6): 555–561, doi:10.1007/BF01067351, PMID 122271, S2CID 40169222 
  21. Wallace, B. (1953), “Genetic divergence of isolated populations of Drosophila melanogaster”, 《Proceedings of the Ninth International Congress of Genetics》 9: 761–764 
  22. Knight, G. R., Robertson, Alan, & Waddington, C. H. (1956), “Selection for sexual isolation within a species”, 《Evolution》 10 (1): 14–22, doi:10.1111/j.1558-5646.1956.tb02825.x 
  23. Robertson, Forbes W. (1966), “A test of sexual isolation in Drosophila”, 《Genetical Research》 8 (2): 181–187, doi:10.1017/S001667230001003X, PMID 5922518 
  24. Robertson, Forbes W. (1966), “The ecological genetics of growth in Drosophila 8. Adaptation to a New Diet”, 《Genetical Research》 8 (2): 165–179, doi:10.1017/S0016672300010028, PMID 5922517 
  25. Hostert, Ellen E. (1997), “Reinforcement: a new perspective on an old controversy”, 《Evolution》 51 (3): 697–702, doi:10.1111/j.1558-5646.1997.tb03653.x, PMID 28568598 
  26. Koref Santibañez, S. & Waddington, C. H. (1958), “The origin of sexual isolation between different lines within a species”, 《Evolution》 12 (4): 485–493, doi:10.2307/2405959, JSTOR 2405959 
  27. Barker, J. S. F. & Cummins, L. J. (1969), “The effect of selection for sternopleural bristle number in mating behaviour in Drosophila melanogaster”, 《Genetics》 61 (3): 713–719, doi:10.1093/genetics/61.3.713, PMC 1212235, PMID 17248436 
  28. Markow, Therese Ann (1975), “A genetic analysis of phototactic behavior in Drosophila melanogaster”, 《Genetics》 79 (3): 527–534, doi:10.1093/genetics/79.3.527, PMC 1213291, PMID 805084 
  29. Markow, Therese Ann (1981), “Mating preferences are not predictive of the direction of evolution in experimental populations of Drosophila”, 《Science》 213 (4514): 1405–1407, doi:10.1126/science.213.4514.1405, PMID 17732575, S2CID 15497733 
  30. Rundle, H. D., Mooers, Arne Ø. & Whitlock, Michael C. (1998), “Single founder-flush events and the evolution of reproductive isolation”, 《Evolution》 52 (6): 1850–1855, doi:10.1111/j.1558-5646.1998.tb02263.x, PMID 28565304, S2CID 24502821 
  31. Mooers, Arne Ø., Rundle, Howard D. & Whitlock, Michael C. (1999), “The effects of selection and bottlenecks on male mating success in peripheral isolates”, 《American Naturalist》 153 (4): 437–444, doi:10.1086/303186, PMID 29586617, S2CID 4411105 
  32. Thoday, J. M. & Gibson, J. B. (1962), “Isolation by disruptive selection”, 《Nature》 193 (4821): 1164–1166, doi:10.1038/1931164a0, PMID 13920720, S2CID 5156234 
  33. Thoday, J. M. & Gibson, J. B. (1970), “The probability of isolation by disruptive selection”, 《Nature》 104 (937): 219–230, doi:10.1086/282656, S2CID 85333360 
  34. Scharloo, W. (1971), “Reproductive isolation by disruptive selection: Did it occur?”, 《American Naturalist》 105 (941): 83–86, doi:10.1086/282706, S2CID 84204545 
  35. Spiess, E. B. & Wilke, C. M. (1984), “Still another attempt to achieve assortive mating by disruptive selection in Drosophila”, 《Evolution》 38 (3): 505–515, doi:10.2307/2408700, JSTOR 2408700, PMID 28555983 
  36. Ehrman, Lee (1971), “Natural selection and the origin of reproductive isolation”, 《American Naturalist》 105 (945): 479–483, doi:10.1086/282739, S2CID 85401244 
  37. Ehrman, Lee (1973), “More on natural selection and the origin of reproductive isolation”, 《American Naturalist》 107 (954): 318–319, doi:10.1086/282835, S2CID 83780632 
  38. Ehrman, Lee (1979), “Still more on natural selection and the origin of reproductive isolation”, 《American Naturalist》 113 (1): 148–150, doi:10.1086/283371, S2CID 85237458 
  39. Ehrman, Lee (1983), “Fourth report on natural selection for the origin of reproductive isolation”, 《American Naturalist》 121 (2): 290–293, doi:10.1086/284059, S2CID 83654887 
  40. Chabora, Alice J. (1968), “Disruptive selection for sternopleural chaeta number in various strains of Drosophila melanogaster”, 《American Naturalist》 102 (928): 525–532, doi:10.1086/282565, S2CID 84885812 
  41. Scharloo, W., Hoogmoed, M. S. & Kuile, A. T. (1967), “Stabilizing and disruptive selection on a mutant character in Drosophila. I. The phenotypic variance and its components.”, 《Genetics》 56 (4): 709–726, doi:10.1093/genetics/56.4.709, PMC 1211648, PMID 6061662 
  42. Coyne, Jerry A. & and Grant, Bruce (1972), “Disruptive selection on I-maze activity in Drosophila melanogaster”, 《Genetics》 71 (1): 185–188, doi:10.1093/genetics/71.1.185, PMC 1212770, PMID 17248572 
  43. Rice, W. R. (1985), “Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment”, 《Evolution》 39 (3): 645–656, doi:10.1111/j.1558-5646.1985.tb00401.x, PMID 28561974 
  44. Rice, William R. & Salt, George, W. (1988), “Speciation via disruptive selection on habitat preference”, 《American Naturalist》 131 (6): 911–917, doi:10.1086/284831, S2CID 84876223 
  45. Rice, William R. & Salt, George, W. (1990), “The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence”, 《Evolution》 44 (5): 1140–1152, doi:10.2307/2409278, JSTOR 2409278, PMID 28563894 
  46. Wallace, B. (1982), “Drosophila melanogaster populations selected for resistances to NaCl and CuSO4 in both allopatry and sympatry”, 《Journal of Heredity》 73 (1): 35–42, doi:10.1093/oxfordjournals.jhered.a109572, PMID 6802898 
  47. Ehrman, Lee, White, Marney A. & Wallace, B. (1991). A long-term study involving Drosophila melanogaster and toxic media. In Hecht, M. K., Wallace, B., & Maclntyre, R. J. (eds). Evolutionary biology, vol. 25. Plenum Press, New York. Pp. 175–209
  48. Fukatami, A & Moriwaki, D. (1970), “Selection for sexual isolation in Drosophila melanogaster by a modification of Koopman's method”, 《The Japanese Journal of Genetics》 45 (3): 193–204, doi:10.1266/jjg.45.193 
  49. Ringo, John; Wood, David; Rockwell, Robert; Dowse, Harold (1985), “An Experiment Testing Two Hypotheses of Speciation”, 《The American Naturalist》 126 (5): 642–661, doi:10.1086/284445, S2CID 84819968 
  50. Dobzhansky, Theodosius; Pavlovsky, O.; Powell, J. R. (1976), “Partially Successful Attempt to Enhance Reproductive Isolation Between Semispecies of Drosophila paulistorum”, 《Evolution》 30 (2): 201–212, doi:10.2307/2407696, JSTOR 2407696, PMID 28563045 
  51. Dobzhansky, Theodosius & Pavlovsky, O. (1966), “Spontaneous origin of an incipient species in the Drosophila paulistorum complex”, 《Proceedings of the National Academy of Sciences》 55 (4): 723–733, doi:10.1073/pnas.55.4.727, PMC 224220, PMID 5219677 
  52. de Oliveira, Alice Kalisz & Cordeiro, Antonio Rodrigues (1980), “Adaptation of Drosophila willistoni experimental populations to extreme pH medium”, 《Heredity》 44: 123–130, doi:10.1038/hdy.1980.11 
  53. Dodd, Diane M. B. (1989), “Reproductive Isolation as a Consequence of Adaptive Divergence in Drosophila pseudoobscura”, 《Evolution》 43 (6): 1308–1311, doi:10.2307/2409365, JSTOR 2409365, PMID 28564510 
  54. Ehrman, Lee (1964), “Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 1. Rudiments of sexual isolation”, 《Genetical Research》 5: 150–157, doi:10.1017/S0016672300001099 
  55. Mouradael, K. (1965), “Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 2. Longevity”, 《Genetical Research》 6: 139–146, doi:10.1017/S0016672300004006, PMID 14297592 
  56. Anderson, Wyatt, W. (1966), “Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura 3. Divergence in Body Size”, 《Genetical Research》 7 (2): 255–266, doi:10.1017/S0016672300009666 
  57. Kitagawa, Osamu (1967), “Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura: IV. Relative viability”, 《Genetical Research》 10 (7): 303–312, doi:10.1017/S001667230001106X 
  58. Ehrman, Lee (1969), “Genetic divergence in M. Vetukhiv's experimental populations of Drosophila pseudoobscura. 5. A further study of rudiments of sexual isolation”, 《American Midland Naturalist》 82 (1): 272–276, doi:10.2307/2423835, JSTOR 2423835 
  59. del Solar, Eduardo (1966), “Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura”, 《Proceedings of the National Academy of Sciences》 56 (2): 484–487, doi:10.1073/pnas.56.2.484, PMC 224398, PMID 5229969 
  60. Powell, Jeffrey R. (1978), “The Founder-Flush Speciation Theory: An Experimental Approach”, 《Evolution》 32 (3): 465–474, doi:10.2307/2407714, JSTOR 2407714, PMID 28567948 
  61. Dodd, Diane M. B. & Powell, Jeffrey R. (1985), “Founder-Flush Speciation: An Update of Experimental Results with Drosophila”, 《Evolution》 39 (6): 1388–1392, doi:10.1111/j.1558-5646.1985.tb05704.x, PMID 28564258 
  62. Galiana, Augustí, Moya, Andres & Ayala, Fransisco J. (1993), “Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment”, 《Evolution》 47 (2): 432–444, doi:10.1111/j.1558-5646.1993.tb02104.x, PMID 28568735 
  63. Rundle, Howard D. (2003), “Divergent environments and population bottlenecks fail to generate premating isolation in Drosophila pseudoobscura”, 《Evolution》 57 (11): 2557–2565, doi:10.1111/j.0014-3820.2003.tb01499.x, PMID 14686531 
  64. Koopman, Karl F. (1950), “Natural Selection for Reproductive Isolation Between Drosophila pseudoobscura and Drosophila persimilis”, 《Evolution》 4 (2): 135–148, doi:10.2307/2405390, JSTOR 2405390 
  65. Kessler, Seymour (1966), “Selection For and Against Ethological Isolation Between Drosophila pseudoobscura and Drosophila persimilis”, 《Evolution》 20 (4): 634–645, doi:10.2307/2406597, JSTOR 2406597, PMID 28562900 
  66. Koepfer, H. Roberta (1987), “Selection for Sexual Isolation Between Geographic Forms of Drosophila mojavensis. I Interactions Between the Selected Forms”, 《Evolution》 41 (1): 37–48, doi:10.2307/2408971, JSTOR 2408971, PMID 28563762 
  67. Etges, W. J. (1998), “Premating isolation is determined by larval rearing substrates in cactophilis Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life-history trait”, 《American Naturalist》 152 (1): 129–144, doi:10.1086/286154, PMID 18811406, S2CID 17689372 
  68. Arita, Lorna H. & Kaneshiro, Kenneth Y. (1979), “Ethological Isolation Between Two Stocks of Drosophila Adiastola Hardy”, 《Hawaiian Entomological Society》 23 (1): 31–34 
  69. Ahearn, J. N. (1980), “Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris”, 《Experientia》 36 (1): 63–64, doi:10.1007/BF02003975, S2CID 43809774 
  70. Soans, A. Benedict; Pimentel, David; Soans, Joyce S. (1974), “Evolution of Reproductive Isolation in Allopatric and Sympatric Populations”, 《The American Naturalist》 108 (959): 117–124, doi:10.1086/282889, S2CID 84913547 
  71. Hurd, L. E. & Eisenberg, Robert M. (1975), “Divergent Selection for Geotactic Response and Evolution of Reproductive Isolation in Sympatric and Allopatric Populations of Houseflies”, 《The American Naturalist》 109 (967): 353–358, doi:10.1086/283002, S2CID 85084378 
  72. Meffert, L. M. & Bryant, E. H. (1991), “Mating propensity and courtship behavior in serially bottlenecked lines of the housefly”, 《Evolution》 45 (2): 293–306, doi:10.1111/j.1558-5646.1991.tb04404.x, PMID 28567864, S2CID 13379387 
  73. Regan, J. L.; Meffert, L. M.; Bryant, E. H. (2003), “A direct experimental test of founder-flush effects on the evolutionary potential for assortative mating”, 《Journal of Evolutionary Biology》 16 (2): 302–312, doi:10.1046/j.1420-9101.2003.00521.x, PMID 14635869 
  74. Miyatake, Takahisa & Shimizu, Toru (1999), “Genetic correlations between life-history and behavioral traits can cause reproductive isolation”, 《Evolution》 53 (1): 201–208, doi:10.2307/2640932, JSTOR 2640932, PMID 28565193 
  75. Paterniani, E. (1969), “Selection for Reproductive Isolation between Two Populations of Maize, Zea mays L.”, 《Evolution》 23 (4): 534–547, doi:10.2307/2406851, JSTOR 2406851, PMID 28562870 
  76. Ödeen, Anders & Florin, Ann-Britt (2002), “Sexual selection and peripatric speciation: the Kaneshiro model revisited”, 《Journal of Evolutionary Biology》 15 (2): 301–306, doi:10.1046/j.1420-9101.2002.00378.x 
  77. Leu, J. Y. & Murray, A. W. (2006), “Experimental evolution of mating discrimination in budding yeast”, 《Current Biology》 16 (3): 280–286, doi:10.1016/j.cub.2005.12.028, PMID 16461281 
  78. Harper, A. A. & Lambert, D. M. (1983), “The population genetics of reinforcing selection”, 《Genetica》 62 (1): 15–23, doi:10.1007/BF00123305, S2CID 7947934 
  79. Halliburton, Richard & Gall, G. A. E. (1981), “Disruptive selection and assortative mating in Tribolium castaneum”, 《Evolution》 35 (5): 829–843, doi:10.1111/j.1558-5646.1981.tb04947.x, PMID 28581046 
  80. Lofdahl, L. Katharine; Hu, Dan; Ehrman, Lee; Hirsch, Jerry; Skoog, Linda (1992), “Incipient reproductive isolation and evolution in laboratory Drosophila melanogaster selected for geotaxis”, 《Animal Behaviour》 44 (4): 783–786, doi:10.1016/S0003-3472(05)80307-0, S2CID 53257556 
  81. Moya, A.; Galiana, A.; Ayala, F. J. (1995), “Founder-effect speciation theory: failure of experimental corroboration”, 《Proceedings of the National Academy of Sciences》 92 (9): 3983–3986, doi:10.1073/pnas.92.9.3983, PMC 42086, PMID 7732017 
  82. Dettman, Jeremy R.; Anderson, James B.; Kohn, Linda M. (2008), “Divergent adaptation promotes reproductive isolation among experimental populations of the filamentous fungus Neurospora”, 《BMC Evolutionary Biology》 8 (35): 35, doi:10.1186/1471-2148-8-35, PMC 2270261, PMID 18237415 
  83. Dettman, Jeremy R.; Sirjusingh, Caroline; Kohn, Linda M.; Anderson, James B. (2007), “Incipient speciation by divergent adaptation and antagonistic epistasis in yeast”, 《Nature》 447 (7144): 585–588, doi:10.1038/nature05856, PMID 17538619, S2CID 4382609 
  84. Martin, Oliver Y. & Hosken, David J. (2003), “The evolution of reproductive isolation through sexual conflict”, 《Nature》 423 (6943): 979–982, doi:10.1038/nature01752, PMID 12827200, S2CID 4379725 
  85. Wigby, S. & Chapman, T. (2006), “No evidence that experimental manipulation of sexual conflict drives premating reproductive isolation in Drosophila melanogaster”, 《Journal of Evolutionary Biology》 19 (4): 1033–1039, doi:10.1111/j.1420-9101.2006.01107.x, PMID 16780504 
  86. Bacigalupe, L. D.; Crudgington, H. S.; Hunter, F.; Moore, A. J.; Snook, R. R. (2007), “Sexual conflict does not drive reproductive isolation in experimental populations of Drosophila pseudoobscura”, 《Journal of Evolutionary Biology》 20 (5): 1763–1771, doi:10.1111/j.1420-9101.2007.01389.x, PMID 17714294 
  87. Rundle, Howard D.; Chenoweth, Steve F.; Doughty, Paul; Blows, Mark W. (2005), “Divergent selection and the evolution of signal traits and mating preferences”, 《PLOS Biology》 3 (11): e368, doi:10.1371/journal.pbio.0030368, PMC 1262626, PMID 16231971 
  88. Higgie, Megan; Chenoweth, Steve F.; Blows, Mark W. (2000), “Natural selection and the reinforcement of mate recognition” (PDF), 《Science》 290 (5491): 519–521, doi:10.1126/science.290.5491.519, PMID 11039933 
  89. Meyer, Justin R.; Dobias, Devin T.; Medina, Sarah J.; Servilio, Lisa; Gupta, Animesh; Lenski, Richard E. (2016), “Ecological speciation of bacteriophage lambda in allopatry and sympatry”, 《Science》 354 (6317): 1301–1304, doi:10.1126/science.aai8446, PMID 27884940 
  90. Overmeer, W. P. J. (1966), “Intersterility as a Consequence of Insecticide Selections in Tetranychus urticae Koch (Acari: Tetranychidae)”, 《Nature》 209 (321): 321, doi:10.1038/209321a0, PMID 5950361, S2CID 4190896 
  91. Fry, James D. (1999), “The role of adaptation to host plants in the evolution of reproductive isolation: Negative evidence from Tetranychus urticae Koch”, 《Experimental & Applied Acarology》 23 (5): 379–387, doi:10.1023/A:1006245711950, hdl:2027.42/41783, S2CID 2329637 
  92. Rieseberg, L. H.; Sinervo B.; Linder, C. R.; Ungerer, M.C.; Arias, D. M. (1996), “Role of Gene Interactions in Hybrid Speciation: Evidence from Ancient and Experimental Hybrids”, 《Science》 272 (5262): 741–745, doi:10.1126/science.272.5262.741, PMID 8662570, S2CID 39005242 
  93. Greig, Duncan; Louis, Edward J.; Borts, Rhona H.; Travisano, Michael (2002), “Hybrid speciation in experimental populations of yeast”, 《Science》 298 (5599): 1773–1775, doi:10.1126/science.1076374, PMID 12459586, S2CID 29972396 
  94. Ghosh, Shampa M. & Joshi, Amitabh (2012), “Evolution of reproductive isolation as a by-product of divergent life-history evolution in laboratory populations of Drosophila melanogaster”, 《Ecology and Evolution》 2 (12): 3214–3226, doi:10.1002/ece3.413, PMC 3539013, PMID 23301185 
  95. Bárbaro, Margarida; Mira, Mário S.; Fragata, Inês; Simões, Pedro; Lima, Margarida; Lopes-Cunha, Miguel; Kellen, Bárbara; Santos, Josiane; Varela, Susana A. M.; Matos, Margarida; Magalhães, Sara (2015), “Evolution of mating behavior between two populations adapting to common environmental conditions”, 《Ecology and Evolution》 5 (8): 1609–1617, doi:10.1002/ece3.1454, PMC 4409410, PMID 25937905 
  96. Anderson, Carlos J. R. & Harmon, Luke (2014), “Ecological and Mutation-Order Speciation in Digital Organisms”, 《The American Naturalist》 183 (2): 257–269, doi:10.1086/674359, PMID 24464199, S2CID 30400444 
  97. Seike, Taisuke; Nakamura, Taro; Shimoda, Chikashi (2015), “Molecular coevolution of a sex pheromone and its receptor triggers reproductive isolation in Schizosaccharomyces pombe”, 《PNAS》 112 (14): 4405–4410, doi:10.1073/pnas.1501661112, PMC 4394278, PMID 25831518 
  98. Debelle, Allan; Ritchie, Michael G.; Snook, Rhonda R. (2014), “Evolution of divergent female mating preference in response to experimental sexual selection”, 《Evolution》 68 (9): 2524–2533, doi:10.1111/evo.12473, PMC 4262321, PMID 24931497 
  99. Fricke, C; Andersson, C.; Arnqvist, G. (2010), “Natural selection hampers divergence of reproductive traits in a seed beetle”, 《Journal of Evolutionary Biology》 23 (9): 1857–1867, doi:10.1111/j.1420-9101.2010.02050.x, PMID 20646133, S2CID 13815274