본문으로 이동

파투 보조정리

위키백과, 우리 모두의 백과사전.

실해석학에서 파투 보조정리(영어: Fatou’s lemma)는 가측 함수의 열의 하극한르베그 적분과 르베그 적분의 하극한 사이에 성립하는 부등식이다.

정의

[편집]

파투 보조정리에 따르면, 측도 공간 위의 임의의 음이 아닌 가측 함수의 열 에 대하여, 다음이 성립한다.[1]:23

여기서 하극한이다.

증명:

다음과 같은 가측 함수의 열을 정의하자.

그렇다면 각 에 대하여 이므로

이다. 이제 단조 수렴 정리에 따르면,

을 얻어, 증명이 끝난다.

[편집]

등식

[편집]

만약 이 같은 상수 함수의 열일 경우, 파투 보조정리는 등식이 된다.

부등식

[편집]

실수선 위의 보렐 시그마 대수 와 그 위의 르베그 측도 를 생각하자.

가측 함수열

의 경우, 파투 보조정리의 좌변과 우변은 각각 0과 ∞이므로, 이는 등식이 아니다.

가측 함수열

의 경우도 파투 보조정리는 엄격한 부등식 0<1이다.

역사

[편집]

프랑스의 수학자 피에르 파투(프랑스어: Pierre Fatou)가 증명하였다.

각주

[편집]
  1. Rudin, Walter (1987). 《Real and Complex Analysis》 (영어) 3판. McGraw-Hill. ISBN 978-0-07-054234-1. MR 0924157. Zbl 0925.00005. 2014년 10월 6일에 원본 문서에서 보존된 문서. 2014년 10월 6일에 확인함. 

외부 링크

[편집]