탄소 나노튜브

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
3D 소프트웨어로 구현된, 회전하는 탄소 나노튜브의 애니메이션.

탄소 나노튜브(Carbon nanotube, CNT)는 원기둥 모양의 나노구조를 지니는 탄소동소체이다. 길이와 지름의 비율이 132,000,000:1에 이르는 나노튜브도 만들어졌는데,[1] 이는 지금까지 알려진 물질 중 가장 높은 값이다. 탄소 나노튜브는 여러 특이한 성질을 가지고 있어서 나노기술, 전기공학, 광학 및 재료공학 등 다양한 분야에서 유용하게 쓰일 수 있다. 특히 열전도율 및 기계적, 전기적 특성이 매우 특이하여 다양한 구조 물질의 첨가제로도 응용되고 있다. 예를 들면 (주로 탄소섬유로 만들어지는) 야구방망이나 골프채, 자동차 부품, 다마스쿠스 강에 탄소 나노튜브를 소량 첨가하기도 한다.[2][3]

나노튜브는 풀러렌 계열의 구조를 지니며, 그래핀이라는 탄소 원자 한 층으로 이루어진 막을 벽으로 하며 길고 속이 빈 튜브 모양으로 만들어졌기 때문에 탄소 나노튜브라는 이름이 붙었다. 그래핀을 둥그렇게 마는 각도에 따라 다른 나노튜브가 만들어질 수 있는데, 이렇게 말리는 각도와 지름에 의해 금속이 될 수도 있고 반도체가 될 수도 있다. 나노튜브는 단일벽 나노튜브와 다중벽 나노튜브로 나눌 수 있다. 나노튜브는 판데르발스 힘에 의해 여러 가닥이 뭉쳐진 “로프” 형태로 정렬되는 경우가 많다.

나노튜브의 화학 결합은 흑연과 같은 sp2 결합만으로 구성된다. sp2 결합은 알케인이나 다이아몬드에서 볼 수 있는 sp3 결합보다 강하며, 나노튜브의 강도가 매우 높은 것도 이 때문이다.

1991년 일본 NEC 연구소의 이이지마 스미오 박사가 전자 현미경을 통해 처음 확인하였다.

탄소나노튜브는 1985년에 Kroto와 Smalley가 탄소동소체풀러렌(탄소 원자 60개가 모인 것:C60)을 처음으로 발견한 이후, 1991년 일본전기회사(NEC) 부설 연구소의 이이지마 박사가 전기방전시 흑연 음극상에 형성된 탄소 덩어리를 투과 전자 현미경으로 분석하는 과정에서 발견하여 네이처 지에 처음으로 발표하였다.[4] 탄소 나노튜브에서 탄소원자 하나는 주위의 다른 탄소 원자 3개와 sp2 결합을 하여 육각형 벌집무늬를 형성하며, 이 튜브의 직경이 대략 수 나노미터(nanometer, nm) 정도로 극히 작기 때문에 나노튜브라고 부르게 되었다. 이 탄소나노튜브는 전기 세기가 클수록 더 수축하는 성질을 가지고 있다.

최근, 한국과학기술연구원(KIST)의 이재갑 박사가 탄소나노튜브 중에 매끈한 원통형이 아닌 절개선이 있는 나선형 모양인 것도 있음을 보이기도 했다. 즉, 단일벽탄소나노튜브(SWNT) 중에는 리본그래핀나선형으로 성장한 것도 있으며,[5] 다중벽탄소나노튜브(MWNT)는 리본흑연나선형으로 성장하여[6] 외견상 튜브처럼 보이는 것도 있음을 고해상도투과전자현미경(HRTEM), 원자현미경(AFM) 관찰, X-ray분석 및 형성에너지 계산을 통해 밝혔다.

탄소 나노튜브 다발의 주사 전자 현미경 이미지
세 겹 팔걸이의자형 탄소 나노튜브

주석[편집]

  1. Wang, X.; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan (2009). “Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates”. 《Nano Letters9 (9): 3137–3141. Bibcode:2009NanoL...9.3137W. doi:10.1021/nl901260b. PMID 19650638. 
  2. http://news.nationalgeographic.com/news/2006/11/061116-nanotech-swords.html
  3. Gullapalli, S.; Wong, M.S. (2011). “Nanotechnology: A Guide to Nano-Objects”. 《Chemical Engineering Progress》 107 (5): 28–32. 
  4. S. Iijima, Nature (1991) 354, 56
  5. J.-K. Lee et al., Small (2014) 10, 3283-3290
  6. J.-K. Lee et al., APL (2013) 102, 161911