T1 공간

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색
위상공간분리공리
T0 콜모고로프 공간
T1  
T2 하우스도르프 공간
T 우리손 공간
완전 T 완비 하우스도르프 공간
T3 정칙 하우스도르프 공간
T 티호노프 공간
T4 정규 하우스도르프 공간
T5 완비 정규 하우스도르프 공간
T6 완전 정규 하우스도르프 공간

일반위상수학에서, T1 공간(T1空間, 영어: T1 space)은 주어진 두 점에 대하여, 첫째를 포함하며 둘째를 포함하지 않는 열린 집합이 존재하는 위상공간이다. 이는 콜모고로프 공간보다 강하지만, 하우스도르프 공간보다 약한 개념이다. 간혹 프레셰 공간(Fréchet space)이라고도 하는데, 이 용어는 함수해석학에서 다루는, 무관한 개념인 프레셰 공간과 혼동될 수 있다.

정의[편집]

T1 공간 X는 임의의 x,y\in X에 대하여, x\in U\not\ni y열린 집합 U가 존재하는 위상공간이다.

성질[편집]

바깥 고리[편집]

  • (영어) Kolmogorov axiom. 《Encyclopedia of Mathematics》. Springer (2001).