분배 함수 (통계역학)

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

통계 역학에서, 분배 함수(分配函數) Z는 열역학적 평형에 있는 계의 통계적 성질을 계산하는 데 쓰는 중요한 개념이다. 분배 함수는 온도나 부피와 같은 열역학적 변수의 함수다. 자유 에너지, 엔트로피, 압력과 같은 열역학적 계의 거시 변수는 대부분 분배 함수나 분배 함수의 미분으로 표시할 수 있다.

분배 함수는 앙상블의 종류에 따라 몇 가지로 나뉜다. 바른틀 앙상블(canonical ensemble)은 일정한 온도, 부피, 입자의 개수를 유지하면서 주위 환경과 열을 교환할 수 있는 계에 적용되며, 바른틀 분배 함수로 기술한다. 큰 바른틀 앙상블(grand canonical ensemble)은 일정한 온도부피, 화학 퍼텐셜을 유지하면서 주위 환경과 열과 입자를 교환할 수 있는 계에 적용되며, 큰 바른틀 분배 함수로 기술한다. 기타 다른 분배 함수는 각각 다른 환경에서 정의한다.

바른틀 분배 함수[편집]

정의[편집]

온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 닫힌 계로 이루어진 앙상블바른틀 앙상블이라 한다. 계의 모든 미시상태에 일련 번호 (=1,2,3, ...)를 붙이고, 계가 미시상태 에 있을 때 계의 총 에너지를 로 표기하자. 일반적으로 계의 불연속적인 양자상태를 미시상태로 간주한다.

바른틀 분배함수는 다음과 같다.

여기서 β는 보통 다음과 같이 정의한다.

T는 계의 온도를 뜻하며, kB볼츠만 상수다. 미시상태에 겹침(degeneracy) 상태가 존재할 경우, 분배함수는 다음과 같이 쓴다.

여기서 겹침 인자다.

물리적 의미[편집]

분배 함수는 온도 T와 미시상태 i의 에너지 Ei의 함수다. 또한 미시상태의 에너지는 입자의 개수, 계의 부피와 같은 열역학적 변수의 함수다. 미시상태의 에너지를 계산해서 분배함수를 구성할 수 있으면, 그 분배함수에서 계의 다른 열역학적 특성을 계산해낼 수 있다.

또한 분배 함수에는 중요한 통계적 의미가 있다. 계가 미시상태 j에 있을 확률 Pj은 다음과 같이 쓸 수 있다.

여기서 볼츠만 인자다. 여기서 분배함수는 확률값의 합을 1로 만드는 틀맞춤(Normalization) 상수로 쓰였다.

"분배 함수"라는 이름은 각각 다른 미시상태의 확률을 '분배'한다고 해서 붙여진 이름이다. Z란 문자는 독일어 단어 Zustandssumme에서 왔으며 "상태의 합(영어: "sum over states")"이란 뜻이다.

열역학적 변수와 관계[편집]

큰 바른틀 분배 함수[편집]

정의[편집]

열역학적 변수와 관계[편집]

참조[편집]

  • Huang, Kerson (1990). 《Statistical Mechanics》. Wiley, John & Sons, Inc. ISBN 0-471-81518-7. 
  • Pathria, R.K. (1996). 《Statistical Mechanics, Second Edition》. Butterworth-Heinemann. ISBN 978-0-7506-2469-5.