본문으로 이동

사용자:Regurus/번역/금성의 테라포밍

위키백과, 우리 모두의 백과사전.

틀:Use dmy dates 금성의 테라포밍은 금성을 사람이 살 수 있도록 행성 개조하는 가상의 과정이다. [1][2][3] 금성의 테라포밍은 학술적인 맥락에서 1961년 천문학자 칼 세이건에 의해 처음 제안되었다. [4] 소설가 폴 안더슨의 사이코테크니컬 리그 중 'the big rain' 장에서와 같이 이는 허구로 취급되어 왔다. 사람이 살 수 있도록 금성의 환경을 변화시키는 과정은 다음과 같이 최소한 세 중대한 변화를 포함할 것이다.[3]

  1. 현재 737 K (464 °C; 867 °F)에 달하는 금성의 기온 낮추기. [5]
  2. 금성 대기의 9.2 MPa (91 atm)에 이르는 이산화탄소와 이산화황을 없애거나 다른 형태로 변화시켜 대부분을 제거하기.
  3. 금성 대기에 숨쉴 수 있는 산소 공급하기.

이 세 변화는 서로 밀접하게 연관되어 있는데, 금성의 매우 높은 기온은 두꺼운 대기의 높은 압력과 온실효과에 의한 것이기 때문이다.

역사[편집]

1960년대 초까지, 천문학자들은 금성의 대기가 지구와 비슷한 기온을 가질 것이라고 생각했다. 금성의 대기가 두꺼운 이산화탄소로 이루어져 매우 큰 온실효과를 지속적으로 일으킨다는 것을 알게 되었을 때,[6] 어떤 과학자들은 금성 대기를 좀 더 지구 대기와 닮도록 변화시키는 방법을 생각하기 시작했다. 테라포밍으로 알려진 이 가상적인 예상은 1961년 금성의 대기와 온실효과에 대해 논한 과학 저널 사이언스지에 실린 칼 세이건의 논문 마지막 장에서 처음으로 제안되었다. [4] 칼 세이건은 광합성을 하는 박테리아를 금성 대기에 주입하여 금성의 이산화탄소를 유기물 로 변화시키어 금성 대기의 이산화탄소 농도를 감소시키는 방법을 제안하였다.

불행히도 칼 세이건이 금성의 테라포밍을 처음 제안했던 1961년에 금성의 대기에 대한 지식은 아직 정확하지 않았다. 첫 제안 30년 뒤에, 칼 세이건의 1994년 책 창백한 푸른 점에서, 그는 금성의 대기가 1961년에 알려져 있던 것보다 훨씬 더 두껍기 때문에 그의 제안은 효과가 없을 것이라고 인정했다. [7]

"여기 가장 치명적인 결점이 있다. 1961년에 나는 금성 표면의 대기압이 고작 지구의 몇 배에 불과할 것이라고 생각했다.... 우리는 이제 금성의 대기압이 지구의 90배라는 것을 안다. 그러므로 만일 이 기법이 성공했다면, 이는 금성 표면이 흑연 몇백 미터 아래에 묻히고 65기압의 순수 산소 대기가 만들어지는 결과를 낳았을 것이다. 우리가 기압을 낮출 수 있을지, 혹은 산소가 불꽃에 의해 스스로 타 버릴지는 아직 수수께끼로 남아 있다. 하지만, 그렇게 많은 산소가 생성되기 전에, 흑연은 아마 스스로 타서 이산화탄소로 돌아가, 이 프로젝트를 방해할 것이다. "

칼 세이건의 글 이후, 1980년대에 이 문제에 대한 관심이 생길 때까지, 이 문제에 대한 토론은 거의 없었다.[8][9][10]

제안된 테라포밍 방법[편집]

금성을 테라포밍하는 여러 방법이 마틴 J. 포그(1995)와 Geoffrey A. Landis(2011)에 의해 검토되었다. [2][11][3]

금성 대기의 두꺼운 이산화탄소 제거[편집]

테라포밍의 관점에서 금성이 가진 가장 큰 문제는 금성의 두꺼운 이산화탄소로 된 대기이다. 금성 지표면의 기압은 9.2 MPa (91 atm; 1,330 psi)이다. 이는 온실효과를 통해 금성 지표의 기온을 수백 도까지 올려 어떤 복잡한 생명체도 살 수 없게 한다. 기본적으로, 모든 제안된 금성을 테라포밍하는 방법은 어떻게든 금성 대기의 거의 모든 이산화탄소를 제거하는 방법을 포함한다.

생물학적 접근[편집]

1961년 칼 세이건이 제안한 방법은 유전공학적으로 개조한 박테리아를 이용하여 유기 화합물탄소를 고정하는 방법을 포함한다. [4]이 방법은 계속 제안되고 있지만, [10] 이후에 이루어진 발견은 생물학적인 접근만은 성공적이지 않으리라는 것을 보여주었다. [12]

이산화탄소에서 유기 분자를 만드는 데는 금성에서 매우 희귀한 수소가 필요하다는 것이 이 접근의 난점이다. [13] 금성에는 자기장이 없기 때문에, 금성의 상부 대기는 태양풍에 노출되어 있다. 금성은 이로 인해 많은 수소를 잃어 왔다. 그리고 칼 세이건이 지적한 바와 같이, 유기 분자가 된 모든 탄소는 뜨거운 지표 환경에 의해 다시 이산화탄소가 될 것이다. 또한 대부분의 이산화탄소가 제거되지 않는 이상 금성이 식을 수는 없다.

금성에 광합성을 하는 박테리아를 들여와서 금성이 테라포밍될 수 없다는 것이 널리 인정되었지만, 산소를 공급하기 위해 대기권에 광합성을 하는 박테리아를 공급하는 것은 여전히 다른 제안에 포함되고 있다.[출처 필요]

탄산염에 탄소 격리[편집]

지구에서 거의 모든 탄소는 탄산염 광물 또는 탄소 순환의 여러 단계 속에 격리되어 있으며, 매우 적은 양만이 이산화탄소의 형태로 대기에 존재한다. 금성의 상황은 다르다. 거의 대부분의 탄소가 대기에 존재하고, 일부만이 암석권에 격리되어 있다. [출처 필요] 대부분의 연구자들은 화학적 되먹임을 통해 이산화탄소를 대기에서 제거하여 탄산염광물의 형태로 안정화시켜 격리하는 방법을 생각한다.

우주생물학자 마크 불도그와 데이비드 그린스푼이 진행한 금성의 대기 진화 시물레이션은 92기압의 두께를 가진 금성 대기와 금성 지표의 광물, 특히 칼슘과 산화 마그네슘 사이의 평형 관계가 매우 불안정하고, 이 중 후자는 이산화탄소와 이산화황을 탄산염광물로 바꾸는 탄소 흡수원 역할을 하여 두 기체의 대기 중 농도를 줄이는 데 도움을 줄 수 있을 것이라고 추측했다.[14] 만일 이 표면광물들이 이산화탄소를 완벽히 전환시켜 흡수하였다면 금성의 대기압이 줄어들것이고, 금성을 어느 정도 식힐 수 있을 것이다. 같은 연구자들이 시뮬레이션한 가능한 결과 중 하나는 43 바 (620 psi)기압의 대기와 400 K (127 °C) 정도의 표면온도이다. 대기권에 남은 이산화탄소를 전환시키기 위해서는, 더 많은 탄산염 전환을 위해, 탄소 지각의 많은 부분이 인공적으로 대기권에 노출되어야 할 것이다. 1989년에 Alexander G. Smith는 금성이 지각이 탄산염으로 전환될 수 있도록 하는 암석권 전복을 통해 테라포밍될 수 있다고 주장했다.[15] 랜디스는 2011년에 대기권에 존재하는 이산화탄소를 충분히 제거하기 위해서는 금성의 전체 지각을 1km 이상 파내야 할 것이라고 계산했다.[3]

탄산염 광물이 자연적으로 생성되는 과정은 매우 느린 과정이다. 하지만 지구 온난화의 속도를 늦추기 위한 맥락에서 나온 대기중의 이산화탄소를 탄산염광물에 격리하는 연구는 이 과정이 마이크로 크기의 폴리스타이렌과 같은 촉매를 이용하면 상당히 가속될 수 있다고(수천수백 년에서 75일까지) 지적한다.[16]그러므로 비슷한 기술이 금성을 테라포밍하는 맥락에서 이론화될 수 있을 것이다. 또한 지표광물과 이산화탄소를 탄산염광물로 바꾸는 화학적 되먹임 과정이 본질적으로 반응에 소비되는 에너지보다 더 많은 에너지를 생성하는 발열반응이라는 점도 지적될 수 있다. 이는 대부분의 공기중 이산화탄소가 전환될 때까지 전환율이 기하급수적으로 증가할 수 있는 양의 되먹임이 생길 가능성을 열어 놓게 한다.

금성 외부에서 정제된 마그네슘칼슘을 투하하는 방법도 탄산칼슘탄산 마그네슘의 형태로 이산화탄소를 격리시킬 수 있다. 칼슘 약 8×10^20 kg 이나 마그네슘 약 5×10^20 kg을 (아마도 광물이 유의미하게 많은 수성에서 채굴하여) 사용하면 금성 대기의 거의 모든 이산화탄소를 제거할 수 있다. [17] 8×10^20 kg의 질량은 소행성 베스타의 질량보다 몇 배 더 큰 질량이다.

이산화탄소를 화산성 현무암에 주입[편집]

아이슬란드와 워싱턴 주에서 이루어진 최근 연구는 많은 양의 대기 중 이산화탄소가 고압을 동반한 화성암지대로의 주입을 통해 격리될 수 있음을 보여주었다. 화성암지대에서는 이산화탄소가 빠르게 고체 상태의 불활성 광물로 변화될 수 있다. [18][19]

다른 최근의 연구결과[20]들에 따르면 1세제곱미터의 현무암은 47킬로그램의 주입된 이산화탄소를 격리할 수 있다고 한다. 이 추정치에 따르면 약 9.86 × 109 세제곱미터의 현무암이 금성 대기중의 이산화탄소를 모두 격리하기 위해 필요하다. 이는 금성의 전체 지각을 21.4Km 파내는 것과 같은 양이다. 다른 연구 결과는 [21] 최적 조건 하에서 평균적으로 1세제곱미터의 현무암은 260Kg의 이산화탄소를 격리할 수 있다고 결론지었다. 금성 지각은 70 킬로미터 (43 mi) 두께이다. 표면은 약 90%의 현무암으로 이루어져 있고, 이 중 65%는 화산 용암 평원에 섞여 있다.[22] 그러므로 금성에는 이산화탄소 격리에 대한 충분한 잠재력을 가진 충분한 현무암층이 있다.

Recent research has also demonstrated that under the high temperature and high pressure conditions in the mantle, silicon dioxide, the most abundant mineral in the mantle (on Earth and probably also on Venus) can form carbonates that are stable under these conditions. This opens up the possibility of carbon dioxide sequestration in the mantle.[23]

Introduction of hydrogen[편집]

According to Birch,[24] bombarding Venus with hydrogen and reacting it with carbon dioxide could produce elemental carbon (graphite) and water by the Bosch reaction. It would take about 4 × 1019 kg of hydrogen to convert the whole Venusian atmosphere,[출처 필요] and such a large amount of hydrogen could be obtained from the gas giants or their moons' ice. Another possible source of hydrogen could be somehow extracting it from possible reservoirs in the interior of the planet itself. According to some researchers, the Earth's mantle and/or core might hold large quantities of hydrogen left there since the original formation of Earth from the nebular cloud.[25][26] Since the original formation and inner structure of Earth and Venus are generally believed to be somewhat similar, the same might be true for Venus.

Iron aerosol in the atmosphere will also be required for the reaction to work, and iron can come from Mercury, asteroids, or the Moon. (Loss of hydrogen due to the solar wind is unlikely to be significant on the timescale of terraforming.) Due to the planet's relatively flat surface, this water would cover about 80% of the surface, compared to 70% for Earth, even though it would amount to only roughly 10% of the water found on Earth.[출처 필요]

The remaining atmosphere, at around 3 bars (about three times that of Earth), would mainly be composed of nitrogen, some of which will dissolve into the new oceans of water, reducing atmospheric pressure further, in accordance with Henry's law. To bring down the pressure even more, nitrogen could also be fixated into nitrates.

Futurist Isaac Arthur has suggested using the theorized processes of starlifting and stellasing to create a particle beam of ionized hydrogen from the sun, tentatively dubbed a "hydro-cannon". This device could be used both to thin the dense atmosphere of Venus, but also to introduce hydrogen to react with carbon dioxide to create water, thereby further lowering the atmospheric pressure.[27]

Direct removal of atmosphere[편집]

The thinning of the Venusian atmosphere could be attempted by a variety of methods, possibly in combination. Directly lifting atmospheric gas from Venus into space would probably prove difficult. Venus has sufficiently high escape velocity to make blasting it away with asteroid impacts impractical. Pollack and Sagan calculated in 1994[28] that an impactor of 700 km diameter striking Venus at greater than 20 km/s, would eject all the atmosphere above the horizon as seen from the point of impact, but because this is less than a thousandth of the total atmosphere and there would be diminishing returns as the atmosphere's density decreases, a very great number of such giant impactors would be required. Landis calculated[3] that to lower the pressure from 92 bar to 1 bar would require a minimum of 2,000 impacts, even if the efficiency of atmosphere removal was perfect. Smaller objects would not work, either, because more would be required. The violence of the bombardment could well result in significant outgassing that would replace removed atmosphere. Most of the ejected atmosphere would go into solar orbit near Venus, and, without further intervention, could be captured by the Venerian gravitational field and become part of the atmosphere once again.

Another variant method involving bombardment would be to perturb a massive Kuiper belt object to put its orbit onto a collision path with Venus. If the object, made of mostly ices, had enough velocity to penetrate just a few kilometers past the Venusian surface, the resulting forces from the vaporization of ice from the impactor and the impact itself could stir the lithosphere and mantle thus ejecting a proportional amount of matter (as magma and gas) from Venus. A byproduct of this method would be either a new moon for Venus or a new impactor-body of debris that would fall back to the surface at a later time.

Removal of atmospheric gas in a more controlled manner could also prove difficult. Venus' extremely slow rotation means that space elevators would be very difficult to construct because the planet's geostationary orbit lies an impractical distance above the surface, and the very thick atmosphere to be removed makes mass drivers useless for removing payloads from the planet's surface. Possible workarounds include placing mass drivers on high-altitude balloons or balloon-supported towers extending above the bulk of the atmosphere, using space fountains, or rotovators.

In addition, if the density of the atmosphere (and corresponding greenhouse effect) were dramatically reduced, the surface temperature (now effectively constant) would probably vary widely between day side and night side. Another side effect to atmospheric-density reduction could be the creation of zones of dramatic weather activity or storms at the terminator because large volumes of atmosphere would undergo rapid heating or cooling.

Cooling planet by solar shades[편집]

Venus receives about twice the sunlight that Earth does, which is thought to have contributed to its runaway greenhouse effect. One means of terraforming Venus could involve reducing the insolation at Venus' surface to prevent the planet from heating up again.

Space-based[편집]

Solar shades could be used to reduce the total insolation received by Venus, cooling the planet somewhat.[29] A shade placed in the Sun–Venus L1]] Lagrangian point also would serve to block the solar wind, removing the radiation exposure problem on Venus.

A suitably large solar shade would be four times the diameter of Venus itself if at the L1]] point. This would necessitate construction in space. There would also be the difficulty of balancing a thin-film shade perpendicular to the Sun's rays at the Sun–Venus Lagrangian point with the incoming radiation pressure, which would tend to turn the shade into a huge solar sail. If the shade were simply left at the L1]] point, the pressure would add force to the sunward side and the shade would accelerate and drift out of orbit. The shade could instead be positioned nearer to the sun, using the solar pressure to balance the gravitational forces, in practice becoming a statite.

Other modifications to the L1]] solar shade design have also been suggested to solve the solar-sail problem. One suggested method is to use polar-orbiting, solar-synchronous mirrors that reflect light toward the back of the sunshade, from the non-sunward side of Venus. Photon pressure would push the support mirrors to an angle of 30 degrees away from the sunward side.[2]

Paul Birch proposed[24] a slatted system of mirrors near the L1]] point between Venus and the Sun. The shade's panels would not be perpendicular to the Sun's rays, but instead at an angle of 30 degrees, such that the reflected light would strike the next panel, negating the photon pressure. Each successive row of panels would be +/- 1 degree off the 30-degree deflection angle, causing the reflected light to be skewed 4 degrees from striking Venus.

Solar shades could also serve as solar power generators. Space-based solar shade techniques, and thin-film solar sails in general, are only in an early stage of development. The vast sizes require a quantity of material that is many orders of magnitude greater than any human-made object that has ever been brought into space or constructed in space.

Atmospheric or surface-based[편집]

Venus could also be cooled by placing reflectors in the atmosphere. Reflective balloons floating in the upper atmosphere could create shade. The number and/or size of the balloons would necessarily be great. Geoffrey A. Landis has suggested[30] that if enough floating cities were built, they could form a solar shield around the planet, and could simultaneously be used to process the atmosphere into a more desirable form, thus combining the solar shield theory and the atmospheric processing theory with a scalable technology that would immediately provide living space in the Venusian atmosphere. If made from carbon nanotubes or graphene (a sheet-like carbon allotrope), then the major structural materials can be produced using carbon dioxide gathered in situ from the atmosphere.[출처 필요] The recently synthesised amorphous carbonia might prove a useful structural material if it can be quenched to Standard Temperature and Pressure (STP) conditions, perhaps in a mixture with regular silica glass. According to Birch's analysis, such colonies and materials would provide an immediate economic return from colonizing Venus, funding further terraforming efforts.[출처 필요]

Increasing the planet's albedo by deploying light-colored or reflective material on the surface (or at any level below the cloud tops) would not be useful, because the Venerian surface is already completely enshrouded by clouds, and almost no sunlight reaches the surface. Thus, it would be unlikely to be able to reflect more light than Venus' already-reflective clouds, with Bond albedo of 0.77.[31]

Combination of solar shades and atmospheric condensation[편집]

Birch proposed that solar shades could be used to not merely cool the planet but that this could be used to reduce atmospheric pressure as well, by the process of freezing of the carbon dioxide.[24] This requires Venus's temperature to be reduced, first to the liquefaction point, requiring a temperature less than 304 K (31 °C; 88 °F) and partial pressures of CO2 to bring the atmospheric pressure down to 73.8 bar (carbon dioxide's critical point); and from there reducing the temperature below 217 K (−56 °C; −69 °F) (carbon dioxide's triple point). Below that temperature, freezing of atmospheric carbon dioxide into dry ice will cause it to deposit onto the surface. He then proposed that the frozen CO2 could be buried and maintained in that condition by pressure, or even shipped off-world (perhaps to provide greenhouse gas needed for terraforming of Mars or the moons of Jupiter). After this process was complete, the shades could be removed or solettas added, allowing the planet to partially warm again to temperatures comfortable for Earth life. A source of hydrogen or water would still be needed, and some of the remaining 3.5 bar of atmospheric nitrogen would need to be fixed into the soil. Birch suggests disrupting an icy moon of Saturn, for example Hyperion, and bombarding Venus with its fragments.

Cooling planet by heat pipes, atmospheric vortex engines or radiative cooling[편집]

Paul Birch suggests that, in addition to cooling the planet with a sunshade in L1, "heat pipes" could be built on the planet to accelerate the cooling. The proposed mechanism would transport heat from the surface to colder regions higher up in the atmosphere, similar to a solar updraft tower, thereby facilitating radiation of excess heat out into space.[24] A newly proposed variation of this technology is the atmospheric vortex engine, where instead of physical chimney pipes, the atmospheric updraft is achieved through the creation of a vortex, similar to a stationary tornado. In addition to this method being less material intensive and potentially more cost effective, this process also produces a net surplus of energy, which could be utilised to power venusian colonies or other aspects of the terraforming effort, while simultaneously contributing to speeding up the cooling of the planet. Another method to cool down the planet could be with the use of radiative cooling[32] This technology could utilise the fact that in certain wavelengths, thermal radiation from the lower atmosphere of Venus can "escape" to space through partially transparent atmospheric “windows” – spectral gaps between strong CO2 and H2O absorption bands in the near infrared range 0.8–2.4 µm (31–94 µin). The outgoing thermal radiation is wavelength dependent and varies from the very surface at 1 µm (39 µin) to approximately 35 km (22 mi) at 2.3 µm (91 µin).[33] Nanophotonics and construction of metamaterials opens up new possibilities to tailor the emittance spectrum of a surface via properly designing periodic nano/micro-structures.[34][35] Recently there has been proposals of a device named a "emissive energy harvester" that can transfer heat to space through radiative cooling and convert part of the heat flow into surplus energy,[36] opening up possibilities of a self-replicating system that could exponentially cool the planet.

Artificial mountains[편집]

As an alternative to changing the atmosphere of Venus, it has been proposed that a large artificial mountain, dubbed the "Venusian Tower of Babel", could be built on the surface of Venus that would reach up to 50 킬로미터 (31 mi) into the atmosphere where the temperature and pressure conditions are similar to Earth and where a colony could be built on the peak of this artificial mountain. Such a structure could be built using autonomous robotic bulldozers and excavators that have been hardened against the extreme temperature and pressure of the Venus atmosphere. Such robotic machines would be covered in a layer of heat and pressure shielding ceramics, with internal helium-based heat pumps inside of the machines to cool both an internal nuclear power plant and to keep the internal electronics and motor actuators of the machine cooled to within operating temperature. Such a machine could be designed to operate for years without external intervention for the purpose of building colossal mountains on Venus to serve as islands of colonization in the skies of Venus.[37][출처 필요]

Introduction of water[편집]

Since Venus only has a fraction of the water on Earth (less than half the Earth's water content in the atmosphere, and none on the surface),[38] water would have to be introduced either by the aforementioned method of introduction of hydrogen, or from some other extraplanetary source.

Capture of ice moon[편집]

Paul Birch suggests the possibility of colliding Venus with one of the ice moons from the outer solar system,[24] thereby bringing in all the water needed for terraformation in one go. This could be achieved through gravity assisted capture of for example Saturn's moons Enceladus and Hyperion or Uranus' moon Miranda. Simply changing the velocity enough of these moons to move them from their current orbit and enable gravity assisted transport to Venus would require large amounts of energy. However, through complex gravity assisted chain reactions the propulsion requirements could be reduced by several orders of magnitude. As Birch puts it "Theoretically one could flick a pebble in to the asteroid belt and end up dumping Mars into the Sun".[24]

Altering day–night cycle[편집]

Venus rotates once every 243 Earth days—by far the slowest rotation period of any known object in the Solar System. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus, the time from one sunrise to the next would be 116.75 days. Therefore, the slow Venerian rotation rate would result in extremely long days and nights, similar to the day-night cycles in the polar regions of earth — shorter, but global. The slow rotation might also account for the lack of a significant magnetic field.

Arguments for keeping the current day-night cycle unchanged[편집]

It has until recently been assumed that the rotation rate or day-night cycle of Venus would have to be increased for successful terraformation to be achieved. More recent research has, however, shown that the current slow rotation rate of Venus is not at all detrimental to the planet's capability to support an Earth-like climate. Rather, the slow rotation rate would, given an Earth-like atmosphere, enable the formation of thick cloud layers on the side of the planet facing the sun. This in turn would raise planetary albedo and act to cool the global temperature to Earth-like levels, despite the greater proximity to the Sun. According to calculations, maximum temperatures would be just around 35° C (95° F), given an Earth-like atmosphere.[39][40] Speeding up the rotation rate would therefore be both impractical and detrimental to the terraforming effort. A terraformed Venus with the current slow rotation would result in a global climate with "day" and "night" periods each roughly 2 months (58 days) long, resembling the seasons at higher latitudes on Earth. The "day" would resemble a short summer with a warm, humid climate, a heavy overcast sky and ample rainfall. The "night" would resemble a short, very dark winter with quite cold temperature and snowfall. There would be periods with more temperate climate and clear weather at sunrise and sunset resembling a "spring" and "autumn".[39]

Space mirrors[편집]

The problem of very dark conditions during the roughly 2 months long "night" period could be solved through the use of a space mirror in a 24-hour orbit (the same distance as a geostationary orbit on earth) similar to the Znamya (satellite) project experiments. Extrapolating the numbers from those experiments and applying them to Venerian conditions would mean that a space mirror just under 1700 meters in diameter could illuminate the entire nightside of the planet with the luminosity of 10-20 full moons and create an artificial 24-hour light cycle. An even bigger mirror could potentially create even stronger illumination conditions. Further extrapolation suggests that to achieve illumination levels of about 400 lux (similar to normal office lighting or a sunrise on a clear day on earth) a circular mirror about 55 kilometers across would be needed.

Paul Birch suggested keeping the entire planet protected from sunlight by a permanent system of slated shades in L1, and the surface illuminated by a rotating soletta mirror in a polar orbit, which would produce a 24-hour light cycle.[24]

Changing rotation speed[편집]

If increasing the rotation speed of the planet would be desired (despite the above-mentioned potentially positive climatic effects of the current rotational speed), it would require energy of a magnitude many orders greater than the construction of orbiting solar mirrors, or even than the removal of the Venerian atmosphere. Birch calculates that increasing the rotation of Venus to an Earth-like solar cycle would require about 1.6 × 1029 Joules[41] (50 billion petawatt-hours).

Scientific research suggests that close flybys of asteroids or cometary bodies larger than 100 kilometres (60 mi) across could be used to move a planet in its orbit, or increase the speed of rotation.[42] The energy required to do this is large. In his book on terraforming, one of the concepts Fogg discusses is to increase the spin of Venus using three quadrillion objects circulating between Venus and the Sun every 2 hours, each traveling at 10% of the speed of light.[2]

G. David Nordley has suggested, in fiction,[43] that Venus might be spun up to a day length of 30 Earth days by exporting the atmosphere of Venus into space via mass drivers. A proposal by Birch involves the use of dynamic compression members to transfer energy and momentum via high-velocity mass streams to a band around the equator of Venus. He calculated that a sufficiently high-velocity mass stream, at about 10% of the speed of light, could give Venus a day of 24 hours in 30 years.[41]

Creating an artificial magnetosphere[편집]

Protecting the new atmosphere from the Solar Wind, to avoid the loss of hydrogen, would require an artificial magnetosphere. Venus presently lacks an intrinsic magnetic field, therefore creating an artificial planetary magnetic field is needed to form a magnetosphere via its interaction with the Solar Wind. According to two NIFS Japanese scientists, it is feasible to do that with current technology by building a system of refrigerated latitudinal superconducting rings, each carrying a sufficient amount of direct current.[44]

In the same report, it is claimed that the economic impact of the system can be minimized by using it also as a planetary energy transfer and storage system (SMES). Another study proposes the possibility of deployment of a magnetic dipole shield at the L1 Lagrange point, thereby creating an artificial magnetosphere that would protect the whole planet from solar wind and radiation.[45]

같이 보기[편집]

References[편집]

  1. Adelman, Saul (1982). “Can Venus Be Transformed into an Earth-Like Planet?”. 《Journal of the British Interplanetary Society》 35: 3–8. Bibcode:1982JBIS...35....3A. 
  2. Fogg, Martyn J. (1995). 《Terraforming: Engineering Planetary Environments》. SAE International, Warrendale, PA. ISBN 978-1-56091-609-3. 
  3. Landis, Geoffrey (2011). 〈Terraforming Venus: A Challenging Project for Future Colonization〉 (PDF). 《AIAA SPACE 2011 Conference & Exposition》. doi:10.2514/6.2011-7215. ISBN 978-1-60086-953-2.  Paper AIAA-2011-7215, AIAA Space 2011 Conference & Exposition, Long Beach CA, Sept. 26–29, 2011.
  4. Sagan, Carl (1961). “The Planet Venus”. 《Science》 133 (3456): 849–58. Bibcode:1961Sci...133..849S. doi:10.1126/science.133.3456.849. PMID 17789744. 
  5. Williams, David R. (15 April 2005). “Venus Fact Sheet”. NASA. 4 March 2016에 원본 문서에서 보존된 문서. 12 October 2007에 확인함. 
  6. Greenhouse effect, clouds and winds. Venus express mission, European Space Agency.
  7. Sagan, Carl (1994). 《Pale Blue Dot (book)》. ISBN 978-0-345-37659-6. 
  8. Oberg, James E. (1981). New Earths, Stackpole Books 1981; New American Library 1983. ISBN 0-8117-1007-6; ISBN 978-0-452-00623-2
  9. Marchal, C (1983). “The Venus-New-World Project”. 《Acta Astronautica》 10 (5–6): 269–275. Bibcode:1983AcAau..10..269M. doi:10.1016/0094-5765(83)90076-0. 
  10. Berry, Adrian (1984) "Venus, The Hell-World," and "Making it Rain in Hell," Chapters 6 & 7 in The Next Ten Thousand Years, New American Library.
  11. Landis, Geoffrey A., "Terraforming: Engineering Planetary Environments (review)" (also available here) (accessed 25 Dec, 2016).
  12. Fogg, M. J. (1987). “The Terraforming of Venus”. 《Journal of the British Interplanetary Society》 40: 551–564. Bibcode:1987JBIS...40..551F. 
  13. Kelly Beatty, J (ed.) (1999) The New Solar System, p176, CUP, ISBN 0-933346-86-7
  14. Bullock, M.A.; Grinspoon, D.G. (1996). “The Stability of Climate on Venus” (PDF). 《J. Geophys. Res.》 101 (E3): 7521–7529. Bibcode:1996JGR...101.7521B. CiteSeerX 10.1.1.74.2299. doi:10.1029/95JE03862. 2004년 9월 20일에 원본 문서 (PDF)에서 보존된 문서. 
  15. Smith, Alexander G (1989). “Transforming Venus by Induced Overturn”. 《Journal of the British Interplanetary Society》 42: 571–576. Bibcode:1989JBIS...42..571S. 
  16. “Scientists find way to make mineral which can remove CO2 from atmosphere”. 《phys.org》. 
  17. Gillett, Stephen L. (1996). 〈Inward Ho!〉. Stanley Schmidt; Robert Zubrin. 《Islands in the Sky: Bold New Ideas for Colonizing Space》. John Wiley & Sons. 78–84쪽. ISBN 978-0-471-13561-6. 
  18. Gislason, Sigurdur (2018). “A brief history of CarbFix: Challenges and victories of the project's pilot phase” (PDF). 《Energy Procedia》 146: 103–114. doi:10.1016/j.egypro.2018.07.014. 
  19. B. Peter McGrail, Herbert T. Schaef, Frank A. Spane, John B. Cliff, Odeta Qafoku, Jake A. Horner, Christopher J. Thompson, Antoinette T. Owen, and Charlotte E. Sullivan (2017). “Field Validation of Supercritical CO2 Reactivity with Basalts” (PDF). 《Environmental Science & Technology Letters》 4: 6–10. doi:10.1021/acs.estlett.6b00387. 2018년 11월 13일에 원본 문서 (PDF)에서 보존된 문서. 
  20. Wei Xiong; Rachel K. Wells; Jake A. Horner; Herbert T. Schaef; Philip A. Skemer; Daniel E. Giammar (2018년 2월 27일). “CO2 Mineral Sequestration in Naturally Porous Basalt”. 《Environmental Science & Technology Letters》 5 (3): 142–147. doi:10.1021/acs.estlett.8b00047. 
  21. Palandri, James L.; Bischoff, James L. J. D.; Thomas, Burt; Rosenbauer, Robert J. (2019년 5월 26일). “Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results”. 《Geochimica et Cosmochimica Acta》 89: 116–133. doi:10.1016/j.gca.2012.04.042. S2CID 38735659. 
  22. D.L. Bindschadler (1995). “Magellan: A new view of Venus' geology and geophysics”. 《Reviews of Geophysics》 (American Geophysical Union) 33 (S1): 459. Bibcode:1995RvGeo..33S.459B. doi:10.1029/95RG00281. 2007년 9월 13일에 확인함. 
  23. Garbarino, Gaston; Levelut, Claire; Cambon, Olivier; Haines, Julien; Gorelli, Federico; Santoro, Mario (2011년 5월 10일). “Silicon carbonate phase formed from carbon dioxide and silica under pressure”. 《Proceedings of the National Academy of Sciences》 108 (19): 7689–7692. Bibcode:2011PNAS..108.7689S. doi:10.1073/pnas.1019691108. PMC 3093504. PMID 21518903. 
  24. Birch, Paul (1991). “Terraforming Venus Quickly” (PDF). 《Journal of the British Interplanetary Society14: 157. Bibcode:1991JBIS...44..157B. 
  25. Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q. R. (2016년 2월 1일). “Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions”. 《Science Advances》 2 (2): e1500802. Bibcode:2016SciA....2E0802S. doi:10.1126/sciadv.1500802. PMC 4771440. PMID 26933678. 
  26. Ueno, Yuichiro; Miyake, Akira; Tsuchiyama, Akira; Ohishi, Yasuo; Uesugi, Kentaro; Hirose, Kei; Nomura, Ryuichi (2014년 1월 31일). “Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite”. 《Science》 (영어) 343 (6170): 522–525. Bibcode:2014Sci...343..522N. doi:10.1126/science.1248186. ISSN 0036-8075. PMID 24436185. S2CID 19754865. 
  27. https://www.youtube.com/watch?v=mtTLj0E9ODc
  28. Pollack, J.B.; Sagan, C. (1994). Lewis, J.; Matthews, M., 편집. 《Resources of Near-Earth Space》. Tucson: University of Arizona Press. 921–950쪽. 
  29. Zubrin, Robert (1999). 《Entering Space: Creating a Spacefaring Civilization》. 
  30. Landis, Geoffrey A. (Feb 2–6, 2003). “Colonization of Venus”. 《Conference on Human Space Exploration, Space Technology & Applications International Forum, Albuquerque NM》. 
  31. National Space Science Data Center (NSSDC), Venus Fact Sheet (retrieved 25 April 2017).
  32. Zevenhoven, Ron; Fält, Martin (2018). “Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach”. 《Energy》 152: 27–33. doi:10.1016/j.energy.2018.03.084. 
  33. Titov, Dmitry V.; Bullock, Mark A.; Crisp, David; Renno, Nilton O.; Taylor, Fredric W; Zasova, Ljudmilla V. (2007). 〈Radiation in the Atmosphere of Venus〉 (PDF). 《Geophysical Monograph Series》. American Geophysical Union. 
  34. Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter (2017). “Radiative sky cooling: Fundamental physics, materials, structures, and applications”. 《Nanophotonics》 6 (5): 997–1015. Bibcode:2017Nanop...6...20S. doi:10.1515/nanoph-2017-0020. 
  35. https://res.mdpi.com/energies/energies-12-00089/article_deploy/energies-12-00089.pdf?filename=&attachment=1
  36. Byrnes, SJ; Blanchard, R; Capasso, F (2014). “Harvesting renewable energy from Earth's mid-infrared emissions”. 《Proc Natl Acad Sci USA》 111 (11): 3927–32. Bibcode:2014PNAS..111.3927B. doi:10.1073/pnas.1402036111. PMC 3964088. PMID 24591604. 
  37. Multiplanetary Society: A New Approach to Terraforming Venus, vol. 12. March 2018, Author WPM
  38. Cain, Fraser (2009년 7월 29일). “Is There Water on Venus?”. 
  39. Yang, Jun; Boué, Gwenaël; Fabrycky, Daniel C.; Abbot, Dorian S. (2014년 4월 25일). “Strong Dependence of The Inner Edge of The Habiable Zone on Planetary Rotation Rate”. 《The Astrophysical Journal》 (영어) 787 (1): L2. arXiv:1404.4992. Bibcode:2014ApJ...787L...2Y. doi:10.1088/2041-8205/787/1/L2. ISSN 2041-8205. S2CID 56145598. 
  40. Way, M. J. (2016). “Was Venus the first habitable world of our solar system?”. 《Geophysical Research Letters》 43 (16): 8376–8383. arXiv:1608.00706. Bibcode:2016GeoRL..43.8376W. doi:10.1002/2016GL069790. PMC 5385710. PMID 28408771. 
  41. Birch, Paul (1993). “How to Spin a Planet” (PDF). 《Journal of the British Interplanetary Society》. 
  42. Newman, Dennis (2001년 2월 5일). “Astronomers hatch plan to move Earth's orbit from warming sun”. 《CNN》. 2019년 5월 26일에 확인함. 
  43. Nordley, Gerald David (May 1991). “The Snows of Venus”. 《Analog Science Fiction and Science Fact》. 
  44. Motojima, Osamu; Yanagi, Nagato (May 2008). “Feasibility of Artificial Geomagnetic Field Generation by a Superconducting Ring Network” (PDF). 《National Institute for Fusion Science (Japan)》. 2016년 6월 7일에 확인함. 
  45. Green, J.L.; Hollingsworth, J. 《A Future Mars Environment for Science and Exploration》 (PDF). Planetary Science Vision 2050 Workshop 2017. 

External links[편집]

틀:Venus 틀:Venus spacecraft