1961년, Babenko는 이 norm의 값을 q가 짝수일 때에 한정하여 구하였고. 1975년에, Beckner는 에르미트 함수가 푸리에 변환의 고유벡터라는 것을 이용하여 이 norm의 값을 2보다 작지 않은 모든 실수 q에 대하여 정확하게 구하였다. 해당 값은 다음과 같다:
엄밀히 말하자면, 이 부등식은, 사용되는 푸리에 변환의 정의가, 1차원에서는 아래와 같이 정의되고 n차원에서는 seperable kernel n개를 곱한 것을 kernel로 하는 방식으로 정의되어야만 성립한다.
The measure that was introduced above is actually a fair Bernoulli trial with mean 0 and variance 1. Consider the sum of a sequence of n such Bernoulli trials, independent and normalized so that the standard deviation remains 1. We obtain the measure which is the n-fold convolution of with itself. The next step is to extend the operator C defined on the two-point space above to an operator defined on the (n + 1)-point space of with respect to the elementary symmetric polynomials.
The sequence converges weakly to the standard normal probability distribution with respect to functions of polynomial growth. In the limit, the extension of the operator C above in terms of the elementary symmetric polynomials with respect to the measure is expressed as an operator T in terms of the Hermite polynomials with respect to the standard normal distribution. These Hermite functions are the eigenfunctions of the Fourier transform, and the (q, p)-norm of the Fourier transform is obtained as a result after some renormalization.