밴드 행렬

위키백과, 우리 모두의 백과사전.
둘러보기로 가기 검색하러 가기

수학 , 특히 행렬 이론에서 밴드 매트릭스(Band matrix)라고 불리는 밴드 행렬이 아닌 엔트리(성분)가 대각선으로 한정된 희소행렬이며,

바꾸어말하면 주 대각선의 대역폭과 양측에 으로 이루어진 개 이상의 대각선을 포함하게 되는 행렬이다.

BandDiagonalwidth-matrix001.svg

기븐스 행렬기븐스 회전(Givens rotation)이 임의의 행렬의 특정 위치의 성분을 으로 만드는 유효한 개념이라고 할 수 있다면, 밴드행렬은 값을 갖는 행렬성분과 비영(非零,non-zero)값의 성분 간의 비율관계에 있어서 유효한 개념이라고 할 수 있다.[1]


일반적인 밴드 행렬[편집]

정사각행렬을 일반적인 밴드행렬 구조로 예약해보면,

[편집]

정사각행렬을 가정하면,

이면, 주대각선만을 갖는 대각행렬
에서 의 대역폭은 3중대각행렬
에서 의 대역폭은 5중대각행렬
에서 의 대역폭은 7중대각행렬
이면서, 이면, 주대각선만을 갖는 주대각선의 성분이 모두 같은 대각행렬이면서 스칼라 행렬이다.

계속해서, 삼각행렬,쉬프트 행렬,바이너리 행렬(로직행렬),헤센베르크 행렬,퇴플리츠 행렬,블록 행렬,전단 행렬(shear matrix),조르당 표준형 행렬,스카이라인 행렬,레머 행렬등 밴드행렬은 공백 또는 0 값을 갖는 행렬성분과 비영(non-zero,非零) 성분간의 비율관계에서 비선형적 형식의 행렬을 통해 이루어질 때, 사실상 대부분의 행렬을 체계적으로 분류하는데 유효하다고 할 수 있다.


대칭행렬[편집]

밴드행렬의 특수한 경우로 주대각선을 기준으로 서로 원소(성분)들이 반사되는 대칭행렬이라는 행렬이 존재한다.

함께보기[편집]

참고[편집]

각주[편집]