본문으로 이동

사용자:조민행

위키백과, 우리 모두의 백과사전.

조민행(1965년 2월26일)은 기초과학연구원 분자 분광학 및 동력학 연구단(IBS Center for Molecular Spectroscopy and Dynamics) 연구단장이며 고려대학교 화학과 교수이다.

경력

[편집]
  • 2014.12 ~ 기초과학연구원 분자 분광학 및 동력학 연구단 연구단장
  • 2005 고려대학교 현대기아 자연과학 석좌교수
  • 2004.03 ~ 2004.08 미국 캘리포니아대학교 버클리캠퍼스 방문교수
  • 2003 ~ 고려대학교 이과대학 화학과 교수
  • 2000.01 ~ 2000.02 영국 옥스포드대학교 방문교수
  • 1999.03 고려대학교 이과대학 화학과 부교수
  • 1997.07 ~ 1997.08 일본 분자과학연구소 방문과학자
  • 1996.03 ~ 1999.02 고려대학교 이과대학 화학과 조교수
  • 1994.01 ~ 1996.02 미국 매사추세츠공과대학교 박사후 연구원
  • 1993.02 ~ 1993.04 미국 브라운대학교 방문과학자
  • 1992.08 ~ 1992.10 일본 분자과학연구소 방문과학자
  • 1991.03 ~ 1991.10 미국 로체스터대학교 방문교수

현대적인 초고속 분광기의 모형을 구축하고 새로운 분광학적 방법을 증명하였다. 양자역학적 원리에 기반을 둔 광화학 분야부터 분광학 실험으로 연구의 지평을 넓혀간 선도적인 연구자로서 인정받고 있다.

학력

[편집]
  • 1989 ~ 1993 시카고대학교 대학원 물리화학 박사
  • 1987 ~ 1989 서울대학교 대학원 화학 석사
  • 1983 ~ 1987 서울대학교 화학 학사

수상내역

[편집]
  • 2012 제57회 대한민국학술원상
  • 2011 한국과학기술한림원 학술상
  • 2010 제6회 경암학술상 자연과학부문
  • 2009 이달의 과학기술자상
  • 1999 브리티쉬 셰브닝 어워드
  • 1999 과학기술부 젊은 과학자상

발표 논문

[편집]

[1] J. Suh and M. Cho, Kinetics of the Carboxypeptidase A-Catalyzed Hydrolysis of alpha- (Benzoylamino) cinnamoyl Derivatives of Various Amino Acids, Bioorganic Chem. 18, 276 (1990)

[2] M. Cho, N. F. Scherer, S. Mukamel, and G. R. Fleming, Photon echoes and related four-wave mixing spectroscopies using phase-locked pulses, J. Chem. Phys. 96, 5618 (1992)

[3] M. Cho, S. J. Rosenthal, N. F. Scherer, L. D. Ziegler, and G. R. Fleming, Ultrafast solvent dynamics: Connection between time-resolved fluorescence and optical Kerr measurements, J. Chem. Phys. 96, 5033 (1992)

[4] S. J. Rosenthal, N. F. Scherer, M. Cho, X. Xie, M. E. Schmidt, and G. R. Fleming, Femtosecond solvent dynamics studied by time-resolved fluorescence and transient birefringence, Ultrafast Phenomena VIII, edited by J. L. Martin, A. Migus, G. A. Mouroum and A. Zewail, Springer (1993) p. 616

[5] N. F. Scherer, M. Cho, L. D. Ziegler, M. Du, A. Matro, J. Cina, and G. R. Fleming, Spectroscopic applications of phase locked femtosecond pulses, Ultrafast Phenomena VIII, edited by J. L. Martin, A. Migus, G. A. Mouroum and A. Zewail, Springer (1993) p. 99

[6] M. Cho and G. R. Fleming, Photon echo measurements in liquids: Numerical calculations with model systems, J. Chem. Phys. 98, 2848 (1993)

[7] M. Cho, G. R. Fleming, and S. Mukamel, Nonlinear response functions for birefringence and dichroim measurements in condensed phases, J. Chem. Phys. 98, 5314 (1993)

[8] M. Cho, Y. Hu, S. J. Rosenthal, D. C. Todd, M. Du, and G. R. Fleming, Friction effects and barrier crossing, in Activated Barrier Crossing Applications in Physics, Chemitry, and Biology, edited by G. R. Fleming and P. G. Hanggi, World Scientific (1994)

[9] M. Cho, M. Du, N. F. Scherer, G. R. Fleming, and S. Mukamel, Off-resonant transient birefringence in condensed phases, J. Chem. Phys. 99, 2410 (1993)

[10] M. Cho, Ph.D. Thesis, Ultrafast solvent dynamics and Nonlinear spectroscopy, (University of Chicago, 1993)

[11] M. Cho and G. R. Fleming, Fifth-order three-pulse scattering spectroscopy: Can we separate homogeneous and inhomogeneous contributions to optical spectra ?, J. Phys. Chem. 98, 3478 (1994).

[12] M. Cho, G. R. Fleming, S. Saito, I. Ohmine, and R. M. Stratt, Instantaneous normal model analysis of liquid water, J. Chem. Phys. 100, 6672 (1994)

[13] R. M. Stratt and M. Cho, The short time dynamics of solvation, J. Chem. Phys. 100, 6700 (1994)

[14] T. Joo, M. Cho, J. Yu, Y. Jia, and G. R. Fleming, Femtosecond dynamics in polar liquids, Ultrafast Phenomena IX (1994)

[15] M. Cho and R. J. Silbey, Nonequilibrium photoinduced electron transfer, J. Chem. Phys. 103, 595 (1995)

[16] M. Cho and R. J. Silbey, Excitation transfer in the vicinity of a dielectric surface, Chem. Phys. Lett. 242, 291 (1995)

[17] M. Cho and R. J. Silbey, Suppression and enhancement of van der Waals interaction, J. Chem. Phys. 104, 8730 (1996)

[18] D. Reichman and M. Cho, Alternative model of dissipation in quantum mechanics, Phys. Rev. E 53, 4184 (1996)

[19] M. Cho, J. Y. Yu, T. Joo, Y. Nagasawa, S. Passino, and G. R. Fleming, The integrated photon echo and solvation dynamics, J. Phys. Chem. 100, 11944 (1996)

[20] G. R. Fleming and M. Cho, Chromophore solvent dynamics, Ann. Rev. Phys. Chem. 47, 103 (1996)

[21] M. Cho, Vibrational relaxation rates of a polar solute in polar liquids, J. Chem. Phys. 105, 10755 (1996).

[22] M. Cho and R. J. Silbey, On the transition from nonadiabatic to adiabatic rate kernel: Schwinger's variational principle and Pade approximants, J. Chem. Phys. 106, 2654 (1997)

[23] G. R. Fleming, T. Joo, and M. Cho, Femtosecond chemical dynamics in condensed phases, Adv. Chem. Phys. 101, 141 (1997).

[24] M. Cho, Operator differential equation approach to the dissipative two-state system, Physica A, 241, 593 (1997).

[25] M. Cho, Off-Resonant Coherent Hyper-Raman Scattering Spectroscopy, J. Chem. Phys., 106, 7550 (1997).

[26] H.-S. Kim, M. Cho, and S.-J. Jeon, Vibrational contributions to the Molecular first and second hyperpolarizabilities, J. Chem. Phys. 107, 1936 (1997).

[27] M. Cho, Spontaneous Emission in Lipid-Water System, J. Chem. Phys. 107, 4499 (1997).

[28] Y. Nagasawa, J.-Y. Yu, M. Cho, and G. R. Fleming, Excited state dynamics of chromophores in glasses and in photosynthetic proteins, Faraday Discuss. 108, 23 (1997).

[29] M. Cho, Vibrational characteristics and vibrational contributions to the nonlinear optical properties of a push-pull polyene in solution, J. Phys. Chem. A 102, 703 (1998).

[30] M. Cho, H.-S. Kim, and S.-J. Jeon, An elementary description of nonlinear optical properties of octupolar molecules: four-state model for guanidinium-type molecules, J. Chem. Phys. 108, 7114 (1998).

[31] M. Cho, H.-S. Kim, and S.-J. Jeon, Erratum: “An elementary description of nonlinear optical properties of octupolar molecules: four-state model for guanidinium-type molecules”, J. Chem. Phys. 109, 11131 (1998).

[32] M. Yang, J. Kim, Y. Jung, and M. Cho, Six-wave mixing spectroscopy: resonant coherent hyper-Raman scattering, J. Chem. Phys. 108, 4013 (1998).

[33] M. Cho, K. Okumura, and Y. Tanimura, Coherent two-dimensional Raman scattering: frequency-domain measurement of the intra- and intermolecular vibrational interactions, J. Chem. Phys. 108, 1326 (1998).

[34] M. Cho, On the resonant coherent two-dimensional Raman scattering (ReCOTRAS), J. Chem. Phys. 109, 5327 (1998).

[35] Y.-K Lee, S.-J. Jeon, and M. Cho, Molecular polarizability and first hyperpolarizability of octupolar molecules: Donor-substituted triphenylmethane dyes, J. Am. Chem. Soc. 120, 10921 (1998).

[36] M. Cho, Resonant coherent hyper-Raman scattering (CHRS). II. a theory on the general relationship between CHRS and coherent Raman scattering (CRS) processes, J. Chem. Phys. 109, 2194 (1998).

[37] B. Yoon, S. H. Kim, I. Lee, S. K. Kim, M. Cho, and H. Kim, Dynamics of nematic MBBA film induced by transient grating under a strong absorption conditions, J. Phys. Chem. 102, 7705 (1998).

[38] M. Cho, Fifth-order coherent light scattering: Extension of the Kramers-Heisenberg expression for light scattering and two-dimensional measurement of vibrational dynamics, J. Chem. Phys. 109, 6227 (1998).

[39] K. Park and M. Cho. Time- and frequency-resolved coherent two-dimensional IR spectroscopy: Its complementary relationship with the coherent two-dimensional Raman scattering spectroscopy, J. Chem. Phys. 109, 10559 (1998).

[40] M. Cho and G. R. Fleming, Electron transfer and solvent dynamics of two and three state systems, Adv. Chem. Phys. 107, 311 (1999).

[41] M. Cho. Two-dimensional vibrational spectroscopy, Advances in Multi-photon processes and spectroscopy, edited by S. H. Lin, A. A. Villaeys, and Y. Fujimura, vol. 12, page 229, (World Scientific, Singapore, 1999).

[42] M. Cho, Confinement-induced enhancement or suppression of the resonant dipole-dipole interaction, J. Chem. Phys. 110, 4998 (1999).

[43] M. Cho, Vibrational properties and vibrational first-hyperpolarizability of octupolar molecule based on a valence-bond three charge-transfer model, J. Phys. Chem. A, 103, 4712 (1999).

[44] Hochan Lee, Sun-Young An, and M. Cho, Nonlinear optical properties of the octupolar molecule: Structure-function relationships and solvent effects, J. Phys. Chem. B, 103, 4992 (1999).

[45] S. Hahn, K. Park, and M. Cho, Two-dimensional vibrational spectroscopy: I. Theoretical calculation of the nonlinear Raman response function of CHCl3, J. Chem. Phys. 111, 4121 (1999).

[46] K. Park, M. Cho, S. Hahn, and D. Kim, Two-dimensional vibrational spectroscopy: II. Ab initio calculation of the coherent 2D IR response function of CHCl3 and comparison with the 2D Raman response function, J. Chem. Phys. 111, 4131 (1999).

[47] M. Cho, Two-dimensional vibrational spectroscopy: III. Theoretical description of the coherent two-dimensional IR-Raman spectroscopy for the investigation of the coupling between both IR- and Raman-active vibrational modes, J. Chem. Phys. 111, 4140 (1999).

[48] M. Cho, Theoretical description of the vibrational echo spectroscopy by time-resolved infrared-infrared-visible difference-frequency-generation, J. Chem. Phys. 111,10587 (1999).

[49] S. Hahn, D. Kim, and M. Cho, Nonlinear optical properties of the linear quadrupolar molecule: structure-function relationship based on a three-state model, J. Phys. Chem. B103, 8221 (1999).

[50] M. Cho, K. Park, S. Hahn, and D. Kim, Transient infrared-infrared-visible sum and difference frequency generation spectroscopies, Ultrafast Phenomena XI, (1999).

[51] M. Cho, Theoretical description of two-dimensional vibrational spectroscopy by infrared-infrared-visible sum frequency generation, Phys. Rev. A61, 23406 (2000).

[52] M. Cho, D. A. Blank, J. Sung, K. Park, S. Hahn, and G. R. Fleming, Intrinsic cascading contributions to the fifth- and seventh-order electronically off-resonant Raman spectroscopies, J. Chem. Phys. 112, 2082 (2000).

[53] K. Park and M. Cho, Theoretical description of the nonlinear response functions associated with eight distinctive three-dimensional vibrational spectroscopies, J. Chem. Phys. 112, 5021 (2000).

[54] S. Hahn, K. Kwak, and, M. Cho, Two-dimensional vibrational spectroscopy: IV. Relationship between through-space vibrational coupling and intermolecular distance, J. Chem. Phys. 112, 4553 (2000)

[55] M. Cho, Triply resonant infrared-infrared-visible sum frequency generation: Three-dimensional vibronic spectroscopy for the investigation of the vibrational and vibronic couplings, J. Chem. Phys. 112, 9002 (2000).

[56] D. A. Blank, G. R. Fleming, M. Cho, and A. Tokmakoff, Fifth order two-dimensional Raman spectroscopy of the intermolecular and vibrational dynamics in liquids, in Ultrafast Infrared and Raman Spectroscopy edited by M. D. Fayer (Marcel Dekker Inc. New York, 2000).

[57] M. Cho, Two-dimensional vibrational spectroscopy: V. Novel 2D surface vibrational spectroscopies of adsorbed molecules on surfaces or at interfaces, J. Chem. Phys. 112, 9978 (2000).

[58] K. Park and M. Cho, Two-dimensional vibrational spectroscopy: VI. Higher-order contributions to the two-dimensional vibrational response functions, J. Chem. Phys. 112, 10496 (2000).

[59] W.-H. Lee, M. Cho, S.-J. Jeon, and B. R. Cho, Two-Photon Absorption and Second Hyperpolarizability of the Linear Quadrupolar Molecule, J. Phys. Chem. A 104, 11033 (2000).

[60] J. Sung and M. Cho, Calculation of the two-dimensional vibrational response function, J. Chem. Phys. 113, 7072(2000).

[61] M. Cho, "Two-dimensional vibrational spectroscopy: VII. Investigation of the vibronic and vibrational couplings by using novel triply resonant 2D vibrational spectroscopies", J. Chem. Phys. 113, 7746 (2000).

[62] M. Bonn, C. Hess, J. H. Miners, T. F. Heinz, H. J. Bakker, and M. Cho, Novel surface vibrational spectroscopy: (IR+IR+VIS) Sum frequency generation, Phys. Rev. Lett. 86, 1566 (2001).

[63] B. R. Cho, S. B. Park, S. J. Lee, K. W. Son, S. H. Lee, M.-J. Lee, Y. K. Lee, G. J. Lee, T. I. Kang, M. Cho, and S.-J. Jeon, 1,3,5-Tricyano-2,4,6-tris(vinyl)benzene derivatives with large second-order nonlinear optical properties, J. Am. Chem. Soc. 123, 6421 (2001).

[64] B. R. Cho, S. J. Lee, S. H. Lee, K. W. Son, Y. H. Kim, J.-Y. Doo, G. J. Lee, T. I. Kang, Y. K. Lee, M. Cho, and S.-J. Jeon, Octupolar crystals for nonlinear optics. 1,3,5-trinitro-2,4,6-tris(styryl)benzene derivatives, Chem. Mater. 13, 1438-1440 (2001).

[65] L. J. Kaufman, J. Heo, G. R. Fleming, J. Sung, and M. Cho, Fifth-order electronically non-resonant Raman scattering: Two-dimensional Fourier deconvolution, Chem. Phys. 266, 251 (2001).

[66] M. Cho, Femtosecond vibrational-electronic four-wave-mixing spectroscopy, J. Chem. Phys. 114, 8040 (2001).

[67] W.-H. Lee, H. Lee, J. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho, Two-photon absorption and nonlinear optical properties of octupolar molecules, J. Am. Chem. Soc. 123, 10658-10667 (2001).

[68] M. Cho, Two-dimensional vibrational spectroscopy: VIII. Infrared optical-Kerr-effect (IR-OKE) and two-color infrared pump-probe measurements, J. Chem. Phys. 114, 9982 (2001).

[69] J. Sung, R. J. Silbey, and M. Cho, Effects of temperature on nonlinear response function for two-dimensional vibrational spectroscopy, J. Chem. Phys. 115, 1422 (2001).

[70] M. Cho, S.-Y. An, H. Lee, I. Ledoux, and J. Zyss, Nonlinear optical properties of tetrahedral donor-acceptor molecules: Effective five-state model approach, J. Chem. Phys. 116, 9165 (2002).

[71] M. Cho, Nonlinear response functions for the three-dimensional spectroscopies, J. Chem. Phys. 115, 4424 (2001).

[72] K. Kwak, S. Y. Cha, M. Cho, and J. C. Wright, Vibrational interactions of acetonitrile: Doubly vibrationally resonant IR-IR-Visible four-wave-mixing spectroscopy, J. Chem. Phys. 117, 5675 (2002).

[73] B. R. Cho,* K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon,* J. H. Choi, H. Lee, and M. Cho,* Two-photon absorption properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives, J. Am. Chem. Soc. 123, 10039-10045 (2001).

[74] Ch. Hess, M. Cho, and M. Bonn, Doubly vibrationally resonant spectroscopy of CO on Ru(001), Surface Science, 502, 123-128 (2002).

[75] S. Cha, S. Ham, and M. Cho, Amide I vibrational modes in glycine dipeptide analogue: Ab initio calculation studies, J. Chem. Phys. 117, 740 (July 8, 2002).

[76] M. Cho, Time-resolved vibrational optical activity measurement by infrared-visible sum-frequency-generation with circularly polarized infrared light, J. Chem. Phys. 116, 1562 (2002).

[77] J.-H. Choi, S. Ham, and M. Cho, Inter-Peptide Interaction and Delocalization of Amide I Vibrational Exitons in Myoglobin and Flavodoxin, J. Chem. Phys. 117, 6821 (2002).

[78] M. Cho, Ultrafast vibrational spectroscopy in condensed phases, PhysChemComm 5 (7), 40 – 58, 2002.

[79] M. Cho, C. Hess, and M. Bonn, Lateral interactions between adsorbed molecules: Investigations of CO on Ru(001) using nonlinear surface vibrational spectroscopies, Phys. Rev. B 65, 205423 (2002).

[80] B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, Nonlinear optical and two-photon absorption properties of octupolar oligomers. 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives, Chem. Eur. J., 8, 3907 (2002).

[81] M. Cho, Correlation between electronic and molecular structure distortions and vibrational properties: I. Adiabatic approximations, J. Chem. Phys. 118, 3480 (Feb.22, 2003).

[82] S. Ham, J.-H. Kim, H. Lee, and M. Cho, Correlation between electronic and molecular structure distortions and vibrational properties: II. Amide I modes of NMA-nD2O complexes, J. Chem. Phys. 118, 3491 (Feb.22, 2003).

[83] S. Ham and M. Cho, Amide I modes in N-methylacetamide dimer and glycine dipeptide analog: Diagonal force constants, J. Chem. Phys. 118, 6915 (2003).

[84] K. Kwak, S. Y. Cha, M. Cho, and J. C. Wright, Erratum: Vibrational interactions of acetonitrile: Doubly vibrationally resonant IR-IR-Visible four-wave-mixing spectroscopy, J. Chem. Phys. 118, 2968 (Feb.8, 2003).

[85] J.-H. Kim and M. Cho, Interplay of the intramolecular water vibrations and hydrogen bond in N-methylacetamide-water complexes: Ab initio calculation studies, Bull. Kor. Chem. Soc. 24, 1061 (8/22/ 2003).

[86] S. Ham, S. Cha, J.-H. Choi, and M. Cho, Amide I modes of tripeptides: Hessian matrix reconstruction and isotope effects, J. Chem. Phys. 119, 1451 (Jul.15, 2003).

[87] J.-H. Choi, S. Ham, and M. Cho, Local amide I mode frequencies and coupling constants in polypeptides, J. Phys. Chem. B 107, 9132 (Aug. 6, 2003).

[88] K. Kwac and M. Cho, Molecular dynamics simulation study of N-methylacetamide in water: I. Amide I mode frequency fluctuation, J. Chem. Phys. 119, 2247 (Feb. 24, 2003).

[89] K. Kwac and M. Cho, Molecular dynamics simulation study of N-methylacetamide in water: II. Numerical calculations of two-dimensional IR pump-probe spectra, J. Chem. Phys. 119, 2256 (Feb. 24, 2003).

[90] K. Kwak, M. Cho, G. R. Fleming, R. Agarwal, and B. S. Prall, Two-color transient grating spectroscopy of a two-level system, Bull. Kor. Chem. Soc. 24, 1069 (8/22/2003).

[91] K. Kwac and M. Cho, Two-color pump-probe spectroscopies of two- and three-level systems: 2-Dimensional line shapes and solvation dynamics, J. Phys. Chem. A 107, 5903 (Jul. 10, 2003).

[92] M. Cho, Two-dimensional circularly polarized pump probe spectroscopy, J. Chem. Phys. 119, 7003 (8/8/2003).

[93] S. Ham, S. Hahn, C. Lee, T.-K. Kim, K.-W. Kwak, and M. Cho, Amide I modes of alpha-helical polypeptide in liquid water: Conformational fluctuation, phase correlation, and linear and nonlinear vibrational spectra, J. Phys. Chem. B 108, 9333 (May 29, 2004).

[94] K. Kwac, H. Lee, and M. Cho, Non-Gaussian Statistics of Amide I Mode Frequency Fluctuation in N-methylacetamide-Methanol Solution: Linear and Nonlinear Vibrational Spectra, J. Chem. Phys. 120, 1477 (Jan. 15, 2004).

[95] J.-H. Choi and M. Cho, Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis, J. Chem. Phys. 120, 4383 (Mar.1, 2004).

[96]’ S. Hahn, H. Lee, and M. Cho, Theoretical calculations of infrared absorption, vibrational circular dichroism, and two-dimensional vibrational spectra of acetylproline in liquids water and chloroform, J. Chem. Phys. 121, 1849 (July 22, 2004).

[97]’ C. Lee and M. Cho, Local Amide I Mode Frequencies and Coupling Constants in Multiple-Stranded Anti-Parallel beta-Sheet Polypeptides, J. Phys. Chem. B 108, 20397 (Nov. 25, 2004).

[98]’ H. Lee, S. Kim, J.-H. Choi, and M. Cho, Theoretical Study of Internal Field Effects on Peptide Amide I Modes, J. Phys. Chem. B 109, 5331-5340 (Feb. 26, 2005).

[99]’ S. Cheon and M. Cho, Circularly polarized infrared-visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement, Phys. Rev. A, 71, 013808 (Jan. 10, 2005).

[100]’ K. Kwac and M. Cho, Hydrogen-bonding dynamics and two-dimensional vibrational spectroscopy: N-methylacetamide in methanol solution, J. Raman Spectrosc. 36, 326-336 (Apr. 22, 2005).

[101]’ J.-H. Choi, J.-S. Kim, and M. Cho,* Amide I vibrational circular dichroism of polypeptides: Generalized fragmentation approximation method, J. Chem. Phys. 122, 174903 (May 3, 2005).

[102]’ J. H. Choi, S. Hahn, and M. Cho,* Amide I IR, VCD, 2D IR spectra of isotope-labeled -helix in liquid water: Numerical simulation studies, International Journal of Quantum Chemistry, 104, 616-634 (July 25, 2005).

[103]’ T. Brixner, J. Stenger, H. Vaswami, M. Cho,* E. Blankenship, and G. R. Fleming,* Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature, 434, 625-628 (Mar.31, 2005).

[104]’ M. F. DeCamp, L. DeFlores, J. M. McCracken, A. Tokmakoff,* K. Kwac, and M. Cho,* Amide I vibrational dynamics of N-methylacetamide in polar solvents: The role of electrostatic interactions, J. Phys. Chem. B 109, 11016-11026 (May 6, 2005).

[105]’ V. Le Floch, S. Brasselet, J. Zyss, B.R. Cho,* S.H. Lee, S.-J. Jeon, M. Cho, K.S. Min, and M. Paik Suh, High efficiency and quadratic nonlinear optical properties of a fully optimized 2D octupolar crystal characterized by nonlinear microscopy, Adv. Mater. 17, 196 (Jan.31, 2005).

[106]’ S. Hahn, S. Ham, and M. Cho,* Simulation studies of amide I IR and 2D IR spectra of -hairpin in liquid water, J. Phys. Chem. B 109, 11789-11801 (May 19, 2005).

[107]’ M. Cho,* H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming,* Exciton analysis in 2D electronic spectroscopy, J. Phys. Chem. B 109, 10542-10556 (Feature article: May 6, 2005).

[108]’ M. Cho* and G. R. Fleming,* The integrated photon echo and solvation dynamics. II. Peak shifts and 2D photon echo of a coupled chromophore system, J. Chem. Phys. 123, 114506 (Sep. 22, 2005).

[109]’ S. Hahn, S.-S. Kim, C. Lee, and M. Cho,* Characteristic 2D IR spectroscopic features of anti-parallel and parallel -sheet polypeptides, J. Chem. Phys. 123, 084905 (Sep. 1, 2005).

[110]’ S. Yang and M. Cho,* IR Spectra of N-Methylacetamide in Water Predicted by Combined QM/MM Molecular Dynamics Simulations, J. Chem. Phys. 123, 134503 (Oct. 3, 2005).

[111]’ M. Cho,* T. Brixner, I. Stiopkin, H. Vaswani, and G. R. Fleming,* Two-dimensional electronic spectroscopy of molecular complexes, J. Chinese Chem. Soc. 53. 15-24 (Feature article: Feb. 2006).

[112] T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Electronic 2D spectroscopy of light harvesting” in Femtochemistry, (Elsevier, New York, 2005), Chapter 1. (Book Chapter).

[113]’ K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Lee, H. Han, and M. Cho*, Structure of acetylproline in liquid water: Experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra, J. Phys. Chem. (R. J. Silbey Festschrift), 110, 18834-18843 (Sep. 21, 2006).

[114]’ C. Lee, K.-H. Park, and M. Cho,* Vibrational dynamics of DNA. I. Vibrational basis modes and couplings, J. Chem. Phys. 125, 114508 (Sep. 21, 2006).

[115]’ C. Lee and M. Cho,* Vibrational dynamics of DNA. II. Deuterium exchange effects and simulated IR spectra, J. Chem. Phys. 125, 114509 (Sep. 21, 2006).

[116]’ C. Lee, K. Park, J.-A. Kim, S. Hahn, and M. Cho,* Vibrational dynamics of DNA. III. MD simulations of DNA in water and theoretical calculations of the 2D IR spectra, J. Chem. Phys. 125, 114510 (Sep. 21, 2006).

[117]’ K. I. Oh, J. Han, K.-K. Lee, S.. Hahn, H. Han, and M. Cho*, Site-specific hydrogen-bonding dynamics of N-acetylproline amide in protic solvents: Comparisons of IR and VCD measurements with MD simulations, J. Phys. Chem. A 110, 13355-13365 (Nov. 30, 2006).

[118]’ S. Yang* and M. Cho,* Thermal denaturation of polyalanine pepide in water by molecular dynamics simulations and theoretical prediction of infrared spectra: Helix-coil transition kinetics, J. Phys. Chem. B 111, 605-617 (Jan. 3, 2007).

[119]’ J.-H. Choi, S. Hahn, and M. Cho,* Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: Constrained MD simulation studies, Biopolymers, 83, 519-536 (Nov.20, 2006).

[120]’ M. Cho, Coherent two-dimensional optical spectroscopy (Review Article), Bull. Korean. Chem. Soc. 27, 1940 (Dec. 20, 2006).

[121]’ K. K. Lee, C. I. Joo, S. Yang, H. Han,* and M. Cho*, Phosphorylation effect on the GSSS peptide conformation in water: Infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations, J. Chem. Phys. 126, 235102 (Jun. 20, 2007).

[122] M. Cho, “Coherent Two-Dimensional Optical Spectroscopy” in Lecture Series on Computer and Computational Sciences, vol.6, Edited by G. Maroulis and T. Simos, Brill Academic Publishers, Leiden, The Netherlands, 2006, pages 91-111.

[123]’ K. Kwac, C. Lee, Y. Jung, J. Han, K. Kwak, J. Zheng, M. D. Fayer, and M. Cho, .Phenol-benzene complexation dynamics: Quantum chemistry calculation, MD simulation, and 2D IR spectroscopy, J. Chem. Phys. 125, 244508 (Dec. 2006).

[124]’ S. Cheon, H. Lee, J.-H. Choi, and M. Cho, Doubly resonant three-wave-mixing spectroscopy of a chiral coupled-chromophore system in solution: Coherent two-dimensional optical activity spectroscopy, J. Chem. Phys. 126, 054505 (Feb.1, 2007).

[125]’ J.-H. Choi, H. Lee, K. K. Lee, S. Hahn, and M. Cho*, Computational spectroscopy of ubiquitin: Comparison between theory and experiment, J. Chem. Phys. 126, 045102 (Jan. 2007).

[126]’ M. Cho, Spectroscopy. Molecular motion pictures, Nature, 444, 431-432 (Nov. 23, 2006).

[127]’ K. Kwac, K.K. Lee, J. B. Han, K.-I. Oh, and M. Cho, Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: Comparisons with IR and vibrational circular dichroism spectra, J. Chem. Phys. 128, 105106 (Mar. 13, 2008).

[128]’ J.-H. Choi and M. Cho*, Two-dimensional circularly polarized photon echo spectroscopy of polypeptides: Four-wave-mixing optical activity measurement, J. Phys. Chem. A, 111, 5176-5184 (May 25, 2007).

[129]’ C. Lee and M. Cho*, Vibrational dynamics of DNA: IV. Vibrational spectroscopic characteristics of A-, B- and Z-form-DNA’s, J. Chem. Phys. 126, 145102 (April. 10, 2007).

[130]’ J.-H. Choi and M. Cho*, Nonlinear optical activity measurement spectroscopy of coupled multi-chromophore systems, Chem. Phys. 341, 57-70 (D. A. Wiersma Festschrift) (May 16, 2007)

[131]’ Kim Hyeon-Deuk*, Y. Tanimura, and M. Cho*, Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to the light harvesting system, J. Chem. Phys. 127, 075101 (Aug.21, 2007).

[132]’ K.-K. Lee, K.-I. Oh, H. Lee, C.-I. Joo, H. Han, and M. Cho*, Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations, ChemPhysChem, 8, 2218-2226 (Oct. 22, 2007).

[133]’ J.-H. Choi and M. Cho*, Quadrupole contribution to third-order optical activity spectroscopy, J. Chem. Phys. 127, 024507 (July 13, 2007).

[134]’ J.-H. Choi, S. Cheon, and M. Cho*, Doubly resonant two-dimensional three-wave-mixing spectroscopy of polypeptides: Structure-spectrum relationships, Chem. Phys. 337, 81-92 (Jul. 14, 2007).

[135]’ H. Rhee, J.-S. Lee, J. Lee, C. Joo, H. Han*, and M. Cho*, Photolytic control and infrared probing of amide I mode in the dipeptide backbone-caged with the 4,5-dimethoxy-2-nitro-benzyl group, J. Phys. Chem. B 112, 2128 (Jan. 23, 2008).

[136]’ M. R. Salvador, P. S. Nair, M. Cho, and G. D. Scholes*, Interaction between excitons determines the non-linear response of nanocrystals, Chem. Phys. 350, 56 (2008).

[137]’ M. Cho, Coherent two-dimensional optical spectroscopy, Chem. Rev. 108, 1331-1418 (Apr. 4, 2008).

[138] M. Cho, A spectroscopist tells how the tools of his trade are revealing quantum effects in biological molecules (Nature, Journal Club, column), Nature, 449, 951 (Oct. 25, 2007).

[139]’ J.-H. Choi, K.-I. Oh, H. Lee, C. Lee, and M. Cho*, Nitrile and thiocyanate IR probes: Quantum chemistry calculation studies and multivariate least-square fitting analysis, J. Chem. Phys. 128, 134506 (Apr. 2, 2008).

[140]’ K. Hyeon-Deuk, Y. Tanimura, and M. Cho*, Ultrafast exciton dynamics in DNA and its nonlinear optical spectroscopy, J. Chem. Phys. 128, 135102 (April 2, 2008).

[141]’ H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho*, Femtosecond Spectral Interferometry of Optical Activity: Theory, J. Chem. Phys. 129, 094507 (Sep. 2008).

[142]’ J.-H. Choi, S. Cheon, H. Lee, and M. Cho*, Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system, Phys. Chem. Chem. Phys. 10, 3839-3856 (July, 2008).

[143] J.-H. Choi and M. Cho*, Computational linear and nonlinear IR spectroscopy of amide I vibrations in protein, in Biomedical Applications of FTIR spectroscopy, in Advances in Biomedical Spectroscopy, vol. 2, Biological and Biomedical Infrared Spectroscopy, edited by Parvez Haris and Andreas Barth, (2009). ISBN: 978-1-60750-045-2

[144]’ K.-I. Oh, J. Lee, C. Joo, H. Han*, and M. Cho*, -Azidoalanine as an IR Probe: Application to amyloid A(16-22) aggregation, J. Phys. Chem. B. 112, 10352-10357 (Aug. 2008).

[145]’ K.-I. Oh, J.-H. Choi, J.-H. Lee, J.-B. Han, H. Lee, and M. Cho*, Nitrile and thiocyanate IR probes: Molecular dynamics simulation studies, J. Chem. Phys. 128, 154504 (April 15, 2008).

[146]’ H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z.-H. Kim, S.-J. Jeon, and M. Cho*, Femtosecond Characterization of vibrational optical activity of chiral molecules, Nature, 458, 310-313 (Mar. 19, 2009).

[147]’ K.-K. Lee, E. Kim, C. Joo, J. Song, H. Han, and M. Cho,* Site-selective intramolecular hydrogen-bonding interactions in phosphorylated serine and threonine dipeptides, J. Phys. Chem. B. 112, 16782-16787 (Dec.1, 2008).

[148]’ J.-H. Choi, K.-I. Oh, and M. Cho*, Azido-derivatized compounds as IR probes of local electrostatic environment: Theoretical studies, J. Chem. Phys. 129, 174512 (Nov. 7, 2008).

[149]’ J.-H. Choi and M. Cho*, Amide I Raman optical activity of polypeptides: Fragment approximation, J. Chem. Phys. 130, 014503 (Jan. 5, 2008).

[150]’ S. Cheon and M. Cho*, Difference-frequency-generation spectroscopy as a vibrational optical activity measurement tool, J. Phys. Chem. A 113, 2438-2445 (Feb.19, 2009).

[151]’ M. Cho,* Vibrational solvatochromism and electrochromism: Coarse grained models and their relationships, J. Chem. Phys. 130, 094505 (Mar. 5, 2009).

[152]’ J. Jeon, S. Yang, J.-H. Choi, and M. Cho,* Computational vibrational spectroscopy of peptides and proteins in one and two dimensions, Acc. Chem. Res. 42,1280-1289 (May 20, 2009).

[153]’ H. Rhee, Y.-G. June, Z. H. Kim, S.-J. Jeon, and M. Cho,* Phase sensitive detection of vibrational optical activity free-induction-decay: Vibrational CD and ORD, J. Op. Soc. Am. B, 26, 1008-1017 (Apr. 16, 2009).

[154]’ J.-H. Ha, K.-K. Lee, K.-H. Park, J.-H. Choi, S.-J. Jeon, and M. Cho,* Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol, J. Chem. Phys. 130, 204509 (May 27, 2009).

[155]’ J.-H. Choi and M. Cho, Calculations of Intermode Coupling Constants and Simulations of Amide I, II, and III Vibrational Spectra of Dipeptides, Chem. Phys. 361, 168-175 (Jul. 11, 2009).

[156]’ H. Rhee, S.-S. Kim, S.-J. Jeon, and M. Cho*, Femtosecond measurements of vibrational circular dichroism and optical rotatory dispersion spectra, ChemPhysChem, 10, 2209-2211 (Sep. 14, 2009).

[157]’ E.-K. Park, B. Park, J.-H. Choi, K. Choi,* and M. Cho*, Chirality transfer effects in proline-substituted coumarin compounds, J. Phys. Chem. B 113, 11301 (Jul, 23, 2009).

[158]’ S. Yang and M. Cho*, Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analogue in water: QM/MM molecular dynamics simulations, J. Chem. Phys. 131, 135102 (Oct. 6, 2009).

[159]’ K.-K. Lee, K.-H. Park, J.-H. Choi, J.-H. Ha, S.-J. Jeon, and M. Cho*, Ultrafast vibrational spectroscopy of cyanophenols, J. Phys. Chem. A 114, 2757 (Feb.8, 2010).

[160] H. Rhee, S. Yang, and M. Cho*, Vibrational Circular Dichroism: Time-Domain Approach, in “Computational Spectroscopy” edited by Jörg Grunenberg, submitted (Oct. 9, 2009).

[161]’ J.-H. Choi, S. Cheon, and M. Cho*, Calculations of vibrationally resonant sum- and difference-frequency-generation spectra of chiral molecules in solutions: Three-wave-mixing vibrational optical activity, J. Chem. Phys. 132, 074506 (Feb. 19, 2010). (JCP Research Highlight)

[162]’ K.-I. Oh, K.-K. Lee, E.-K. Park, E. Yoo, G.-S. Hwang, and M. Cho*, Circular dichroism eigenspectra of polyproline II and beta-strand conformers of trialanine in water: Singular value decomposition analysis, Chirality (special issue for CD and ISBC) 22, E186-E201 (Nov., 2010).

[163]’ H. Lee, S. Cheon, and M. Cho*, Chiroptical Nature of Two-Exciton States of Light-Harvesting Complex: Doubly Resonant Three-Wave-Mixing Spectroscopy, J. Chem. Phys. 132, 225102 (June 11, 2010). (JCP Research Highlight).

[164]’ J. Jeon and M. Cho*, Direct Quantum Mechanical/Molecular Mechanical Simulations of Two-Dimensional Vibrational Spectrum: N-Methylacetamide in Water, New J. Phys. 12, 065001 (June 4, 2010).

[165]’ H. Lee, J.-H. Choi, and M. Cho*, Vibrational Solvatochromism and Electrochromism of Cyanide, Thiocyanate, and Azide Anions in Water, Phys. Chem. Chem. Phys. 12, 12658 (Oct.1, 2010).

[166]’ K. H. Park, S. R. Choi, J.-H. Choi, S. Park,* and M. Cho*, Real Time Probing of Ion Pairing Dynamics with 2DIR Spectroscopy, ChemPhysChem, 11, 3632-3637 (Online Pub. Nov. 10, 2010).

[167]’ K.-I. Oh, W. Kim, C. Joo, H. Han, K.-S. Hwang, and M. Cho*, Azido gauche effects on peptide backbone conformation of beta-azidoalanine peptides, J. Phys. Chem. B. 114, 13021-13029 (Sep. 17, 2010).

[168] J. Jeon, S. Park, and M. Cho*, Two-Dimensional Vibrational and Optical Correlation Spectroscopy, Encyclopedia of Analytical Chemistry, Supplementary Volumes S1-S3, edited by Robert A. Meyers, Chichester, UK: John Wiley and Sons Ltd, pp 1331-1360. (ISBN: 978-0-470-97333-2). J. Jeon, S. Park, and M. Cho, "Two-dimensional Optical Spectroscopy: Theory and Experiment" in Encyclopedia of Analytical Chemistry, eds R.A. Meyers, John Wiley: Chichester. DOI: 10.1002/9780470027318.a9117. Published 15 December 2010.

J. Jeon, S. Park, and M. Cho, "Two-dimensional Optical Spectroscopy: Theory and Experiment" in Encyclopedia of Analytical Chemistry, Supplementary Volumes S1-S3, edited by Robert A. Meyers, Chichester, UK: John Wiley & Sons, Ltd, pp 1331-1360. (ISBN: 978-0-470-97333-2).


[169]’ H. Rhee, J.-H. Choi, and M. Cho*, Infrared Optical Activity: Electric Field Approaches in Time Domain, Acc. Chem. Res. 43(12), 1527-1536 (Oct. 8, 2010).

[170]’ J.-H. Choi and M. Cho*, Polarization-Angle-Scanning Two-Dimensional Spectroscopy: Application to Dipeptide Structure Determination, J. Phys. Chem. A 115, 3766-3777 (Fleming Festschrift) (Publication: April 28, 2010).

[171]’ J.-H. Choi and M. Cho*, Polarization-angle-scanning 2DIR spectroscopy of antiparallel beta-sheet polypeptide: Additional dimensions in 2D optical spectroscopy, J. Chem. Phys. 133, 241102 (Apr. 28, 2011).

[172] H. Rhee and M. Cho*, Femtosecond IR circular dichroism and optical rotatory dispersion, Comprehensive Chiroptical Spectroscopy, edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody (Wiley, Hoboken, 2012).

[173] K.-K. Lee, K.-H. Park, C. Joo, H.-J. Kwon, J. Jeon, H.-I. Jung, S. Park, H. Han*, and M. Cho*, Infrared probing of 4-azidoproline conformations modulated by azido group configurations, J. Phys. Chem. B. 116, 5097-5110 (Web publication: April 18, 2012).

[174]’ K.-K. Lee, K.-H. Park, S. Park, S.-J. Jeon, and M. Cho*, Polarization-angle-scanning 2DIR spectroscopy of coupled anharmonic oscillators: A polarization null angle method, J. Phys. Chem. B 115, 5456-5464 (S. Mukamel Special Issue) (Online Publication; Dec.28, 2010. Publication: May 12, 2011).

[175]’ K.-K. Lee, K.-H. Park, D. Kwon, J.-H. Choi, H. Son, S. Park*, and M. Cho*, Ion-pairing dynamics of Li+ and SCN- in dimethylformamide solution: Chemical exchange two-dimensional infrared spectroscopy, J. Chem. Phys. 134, 064506 (Feb. 9, 2011).

[176]’ J.-H. Choi and M. Cho*, Vibrational solvatochromism and electrochromism of IR probe molecules containing CO, CN, C=O, or C-F vibrational chromophore, J. Chem. Phys. 134, 154513 (Online Publication: Apr.1, 2011).

[177]’ K.-K. Lee, K.-H. Park, H. Han, S. Park*, J.-H. Ha, and M. Cho*, Ultrafast internal rotational dynamics of azido group in (4S)-azidoproline: Chemical exchange 2DIR spectroscopic investigations, Chem. Phys. 396, 23-29 (April 5, 2012).

[178]’ E. Eom, S.-H. Ahn, H. Rhee,* and M. Cho, Broadband near UV to visible optical activity measurement using self-heterodyned interferometry, Opt. Express, 19, 10017-10028 (May 6, 2011).

[179]’ S.-Y. Kim, Y. Jung, G.-S. Hwang, H. Han, and M. Cho,* Phosphorylation alters backbone conformational preferences of serine and threonine peptides, Proteins: Structure, Function, and Bioinformatics, 79, 3155-3165 (Online publication: Aug.2, 2011).

[180]’ J.-H. Choi, D. Raleigh, and M. Cho*, Azido homoalanine is a useful infrared probe for monitoring local electrostatistics and sidechain solvation in proteins, J. Phys. Chem. Lett. 2, 2158-2162 (Online Publication: Aug.10, 2011).

[181]’ J. Jeon and M. Cho,* Redistribution of Carbonyl Stretch Mode Energy in Isolated and Solvated N-Methylacetamide: Kinetic Energy Spectral Density Analyses, J. Chem. Phys, 135, 214504 (Dec. 2, 2011).

[182]’ J.-H. Choi and M. Cho*, Direct Calculations of Mid- and Near-IR Absorption and Circular Dichroism Spectra of Chiral Molecule Using QM/MM Molecular Dynamics Simulation Method, J. Chem. Theory and Comp. 7, 4097-4103 (Nov. 11, 2011).

[183]’ I. Eom, S.-H. Ahn, H. Rhee*, and M. Cho*, Single-shot electronic optical activity interferometry: Power and phase fluctuation-free measurement, Phys. Rev. Lett. 108, 103901 (Mar. 9, 2012).

[183]’ K.-I. Oh, K.-K. Lee, E.-K. Park, G.-S. Hwang, and M. Cho,* A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins, Proteins-Structure, Function, and Bioinformatics, 80, 977-990 (Jan. 4, 2012).

[184]’ H. Lee, G. Lee, J. Jeon, and M. Cho*, Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes, J. Phys. Chem. A 116, 347-357 (2012)

[185]’ H. Kim, H. Lee, G. Lee, H. Kim, and M. Cho*, Hofmeister anionic effects on hydration electric fields around water and peptide, J. Chem. Phys. 136, 124501 (Online: Mar. 22, 2012).

[186]’ K.-I. Oh, Y.-S. Jung, G.-S. Hwang*, and M. Cho*, Conformational distributions of denatured and non-structured proteins are similar to those of 20X20 blocked dipeptides, J. Biomol. NMR 53, 25-41 (Mar. 18, 2012).

[187]’ H. Kim, S. Park*, and M. Cho*, Rotational dynamics of thiocyanate ions in highly concentrated aqueous solutions, Phys. Chem. Chem. Phys. 14, 6233-6240 (Feb. 28, 2012).

[188]’ H. Rhee*, I. Eom, S.-H. Ahn, and M. Cho*, Coherent electric field characterization of molecular chirality in time domain, Chem. Soc. Rev. 41, 4457-4466 (Online: Apr. 16, 2012).

[189]’ M. Cho, Infrared spectroscopy: Mapping protein-protein contacts, Nature Chem. 4, 339 (May, 2012).

[190] K.-W. Kwak, K.-H. Park, and M. Cho*, Polarization-controlled chiroptical and 2D optical spectroscopy, in Ultrafast Infrared and Raman Spectroscopy, Edited by M. D. Fayer (CRC Press, New York, 2012) (Apr. 17, 2012)

[191]’ H. Lee, J.-H. Choi, and M. Cho*, Vibrational solvatochromism and electrochromism: II. Multipole analysis, J. Chem. Phys. 137, 114307 (Sep. 20, 2012).

[192]’ M. Ghosh, J. Lee, C. H. Choi*, and M. Cho*, Direct simulations of anharmonic IR spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): Methanol in water, J. Phys. Chem. A 116, 8965-8971 (Aug.22, 2012).

[193]’ J. S. Choi and M. Cho*, Limitations of a superchiral field, Phys. Rev. A 86, 063834 (Dec. 27, 2012).

[194]’ H. Son, K.-H. Park, K.-W. Kwak, S. Park*, and M. Cho*, Ultrafast intermolecular vibrational excitation transfer from solute to solvent: Direct observation of intermediate states, Chem. Phys. 422, 37-46 (Mar. 21, 2013) DOI: 10.1016/j.chemphys.2013.03.008

[195]’ M. Maj, J. Jeon, R. W. Gora, and M. Cho*, Induced optical activity of DNA-templated cyanine dye aggregates: Exciton coupling theory and TD-DFT studies, J. Phys. Chem. A. 117, 5909-5918 (J. C. Wright Festschrift) (2013). DOI: 10.1021/jp309807y

[196]’ H. Kim and M. Cho*, IR probes for studying structure and dynamics of biomolecules, Chem. Rev. 113, 5817-5847 (May 16, 2013). dx.doi.org/10.1021/cr3005185

[197]’ J.-H. Choi and M. Cho*, Computational IR Spectroscopy of Water: OH Stretch Frequencies, Transition Dipoles, and Intermolecular Vibrational Coupling Constants, J. Chem. Phys. 138, 174108 (May 3, 2013). doi: 10.1063/1.4802991.

[198]’ M. Cho*, Connection between Chiroptical Signal Enhancements and Weak Measurements, Phys. Rev. A 88, 023833 (Aug. 19, 2013).

[199]’ H. Rhee, J. Choi, D. Starling, J. Howell, and M. Cho*, Amplifications in Chiroptical Spectroscopy, Optical Enantioselectivity, and Weak Measurement, Chem. Sci. 4, 4107-4114 (Jul. 22, 2013). DOI: 10.1039/C3SC51255J

[200]’ K.-H. Park, J. Jeon, Y. Park, S. Lee, H.-J. Kwon, C. Joo, S. Park*, H. Han*, and M. Cho*, Infrared probes based on nitrile-derivatized prolines: Thermal insulation effect and enhanced dynamic range, J. Phys. Chem. Lett. 4, 2105-2110 (May 8, 2013).

[201]’ B. Blasiak, H. Lee, and M. Cho*, Vibrational Solvatochromism: Towards Systematic Approach to Modeling Solvation Phenomena, J. Chem. Phys. 139, 044111 (July 25, 2013). [1]

[202]’ J.-H. Choi, K.-W. Kwak*, and M. Cho*, Computational Infrared and Two-Dimensional Infrared Photon Echo Spectroscopy of Both Wild-Type and Double Mutant Myoglobin-CO Proteins, J. Phys. Chem. B 117, 15462-15478 (M. D. Fayer Festschrift) (Dec. 12, 2013)

[203]’ Y.-S. Jung, K.-I. Oh, G.-S. Hwang*, and M. Cho*, Neighboring Residue Effects in Blocked Dipeptides: Implications for Residual Secondary Structures in Intrinsically Unfolded/Disordered Proteins, Chirality, 26, 443-452 (Jan. 22, 2014).

[204]’ J. Lee, J. Jeon, M.-S. Kim, H. Lee, and M. Cho*, Amide I IR Probing of Core and Shell Hydrogen-Bond Structures in Reverse Micelles, Pure & Applied Chemistry 86, 135 (Jan. 27, 2014).

[205] S. Yoo, M. Cho, and Q.-H. Park*, Globally enhanced chiral field generation by negative-index metamaterials, Phys. Rev. B 89, 161405(R) (April 23, 2014).

[206]’ J. Jeon and M. Cho*, Ac accurate classical simulation of two-dimensional vibrational spectrum: OD stretch spectrum of a hydrated HOD molecule, J. Phys. Chem. B, 118, 8148-8161 (J. L. Skinner Festschrift) (March 6, 2014).

[207]’ B. Błasiak and M. Cho*, Vibrational solvatochromism: II. A first-principles theory of vibrational frequency shift based on effective fragment potential method, J. Chem. Phys. 140, 164107 (Apr. 25, 2014).

[208]’ M. Maj, Y. Oh, K.H. Park, J. Lee, K.-W. Kwak, and M. Cho, Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin, J. Chem. Phys., 140, 235104 (June 19, 2014).

[209]’ S. Kim, H. Kim, J.-H. Choi, and M. Cho*, Ion aggregation in high salt solutions: Ion network versus ion cluster, J. Chem. Phys., 141, 124510 (Sep. 30, 2014). DOI: 10.1063/1.4896227

[210]’ J. Lee, M. Maj, K. Kwak*, and M. Cho*, Infrared pump-probe study of nanoconfined water structure in reverse micelle, J. Phys. Chem. Lett., 5, 3404-3407 (Sep. 19, 2014).

[211] J.-H. Choi and M. Cho*, Terahertz chiroptical spectroscopy of -helical polypeptide: Molecular dynamics simulation study, J. Phys. Chem. B, 118, 12837-12843 (Oct. 24, 2014). DOI: 10.1021/jp508547y

[212]’ J.-H. Choi and M. Cho*, Ion aggregation in high salt solutions: II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures, J. Chem. Phys., 141, 154502 (Oct.16, 2014). DOI: 10.1063/1.4897638

[213] J. Jeon, J. H. Lim, S. Kim, H. Kim, and M. Cho*, Simultaneous spectral and temporal analyses of kinetic energies in non-equilibrium systems: Theory and application to vibrational relaxation of O-H stretch mode of HOD in water, J. Phys. Chem. A 119, 5356-5367 (Jacopo Tomasi Festschrift) (Online publication: Dec. 10, 2014). DOI: 10.1021/jp510157y

[214] M. K. Ghosh, J.-H. Choi, C. H. Choi*, and M. Cho*, Ion Pair Structures in Aqueous KSCN Solution: Classical and Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation Study, Bull. Kor. Chem. Soc. (Kwan Kim Festschrift) 36, 944-949 (Mar. 2015).

[215] H. Rhee*, I. Eom, S.-H. Ahn, K.-H. Song, and M. Cho*, Chiroptical signal enhancement in quasi-null-polarization detection geometry: Intrinsic limitations, Phys. Rev. A 91, 053839 (May 21, 2015).

[216] M. Maj, C. Ahn, D. Kossowska, K. Park, K. Kwak, H. Han*, and M. Cho*, -Isocyanoalanine as an IR probe: Comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes, Phys. Chem. Chem. Phys. 17, 11770-11778 (May 7, 2015). DOI: 10.1039/C5CP00454C

[217] B. Blasiak, M. Maj, M. Cho, R. W. Gora*, Distributed multipolar expansion approach to calculation of excitation energy transfer couplings, J. Chem. Theo. Comp. 11, 3259-3266 (June 16, 2015).

[218] J.-H. Choi, H. Kim, S. Kim, S. Lim, B. Cheon, and M. Cho*, Ion aggregation in high salt solutions: III. Computational vibrational spectroscopy of HDO in aqueous salt solutions, J. Chem. Phys. 142, 204102 (May 22, 2015).

[219] M. Cho, High-harmonic generation: Drive round the twist, Nature Phys. (2015) doi:10.1038/nphys3395

[220] M. Maj, K.-W. Kwak, and M. Cho*, Ultrafast structural fluctuations of myoglobin-bound thio- and selenocyanate ions measured with two-dimensional IR photon echo spectroscopy, ChemPhysChem, in revision (May 5, 2015)

[221] P. K. Verma, H. Lee, J.-Y. Park, J.-H. Lim, M. Maj, J.-H. Choi, K.-W. Kwak, and M. Cho*, Modulation of the hydrogen bonding structure of water by renal osmolytes, J. Phys. Chem. Lett. 6, 2773-2779 (June 29, 2015).

[222] J.-H. Choi and M. Cho*, Ion aggregation in high salt solutions: IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network, J. Chem. Phys. 143, 104110 (September 11, 2015).

[223] H. Lee, J.-H. Choi, P. Verma, M. Cho*, Spectral graph analyses of water hydrogen-bonding network and osmolyte aggregate structures in osmolyte-water solutions, J. Phys. Chem. B. in revision (2015).

[224] K.-H. Song, M. Gu, M.-S. Kim, H.-J. Kwon, H. Rhee*, H. Han*, and M. Cho*, Quantum beats and phase shifts in 2D electronic spectra of zinc naphthalocyanine monomer and aggregate, J. Phys. Chem. Lett. in revision (2015).

[225] B. Blasiak and M. Cho*, Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution, J. Chem. Phys. in revision (2015).

[226] S. H. Kim, A.-R. Lee, S. H. Lim, M. Cho, N.-K. Lee, J.-H. Lee, S.-C. Hong, Dynamic Z-form of DNA functions as a mechanical switch, J. Phys. Chem. Lett. submitted (2015).

바깥고리

[편집]

IBS 분자 분광학 및 동력학 연구단

분류:조민행 분류:화학 분류:분자 분광학