HIV/AIDS의 역사: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
잔글편집 요약 없음
Hohyo (토론 | 기여)
번역
6번째 줄: 6번째 줄:
== 비-인간에서 인간으로 전파 ==
== 비-인간에서 인간으로 전파 ==
대부분의 HIV 연구자들은 HIV가 어느 시점에서 진화했다고 동의한다. 이 시점은 [[원숭이 면역 결핍 바이러스|원숭이 면역결핍증 바이러스]](SIV)와 밀접하게 관련되어 있다. SIV 혹은 HIV(돌연변이 후)가 비-인간 영장류로부터 인간으로 전파된것이 비교적 최근이라고 주장한다. ( 즉, [[인수공통감염병]]의 한 종류인 것이다.) 이 분야의 연구는 [[계통학|분자적 계통학]]을 이용하여 연구되고 있으며, 바이러스들의 게놈 시퀀스를 서로 비교하여 연관성을 찾아내고자 한다.
대부분의 HIV 연구자들은 HIV가 어느 시점에서 진화했다고 동의한다. 이 시점은 [[원숭이 면역 결핍 바이러스|원숭이 면역결핍증 바이러스]](SIV)와 밀접하게 관련되어 있다. SIV 혹은 HIV(돌연변이 후)가 비-인간 영장류로부터 인간으로 전파된것이 비교적 최근이라고 주장한다. ( 즉, [[인수공통감염병]]의 한 종류인 것이다.) 이 분야의 연구는 [[계통학|분자적 계통학]]을 이용하여 연구되고 있으며, 바이러스들의 게놈 시퀀스를 서로 비교하여 연관성을 찾아내고자 한다.

=== 침팬지와 고릴라에서 인간으로 HIV의 이동 ===
과학자들은 일반적으로 HIV-1 그룹이 중앙 아프리카 숲(West Central African forests) 고유의 Simian 면역 결핍 바이러스(simian immunodeficiency viruses)

=== HIV-1 from chimpanzees and gorillas to humans ===
Scientists generally accept that the known strains (or groups) of [[:en:HIV-1|HIV-1]] are most closely related to the simian immunodeficiency viruses (SIVs) endemic in wild [[:en:Ape|ape]] populations of West Central African forests.<ref>{{cite journal|title=The evolution of HIV-1 and the origin of AIDS|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|last1=Sharp|first1=Paul M.|last2=Hahn|first2=Beatrice H.|date=2010-08-27|volume=365|issue=1552|publisher=The Royal Society|pages=2487–2494|doi=10.1098/rstb.2010.0031|issn=0962-8436|pmc=2935100|pmid=20643738|doi-access=free}}</ref><ref>{{cite journal|title=Origin and Biology of Simian Immunodeficiency Virus in Wild-Living Western Gorillas|journal=Journal of Virology|last1=Takehisa|first1=Jun|last2=Kraus|first2=Matthias H.|date=2008-12-10|volume=83|issue=4|publisher=American Society for Microbiology|pages=1635–1648|doi=10.1128/jvi.02311-08|issn=0022-538X|pmc=2643789|pmid=19073717|last3=Ayouba|first3=Ahidjo|last4=Bailes|first4=Elizabeth|last5=Van Heuverswyn|first5=Fran|last6=Decker|first6=Julie M.|last7=Li|first7=Yingying|last8=Rudicell|first8=Rebecca S.|last9=Learn|first9=Gerald H.|first11=Eitel Mpoudi|first15=Beatrice H.|last15=Hahn|first14=Paul M.|last14=Sharp|first13=Martine|last13=Peeters|first12=George M.|last12=Shaw|last11=Ngole|first10=Cecile|last10=Neel|doi-access=free}}</ref> In particular, each of the known HIV-1 strains is either closely related to the [[:en:Simian_immunodeficiency_virus|SIV]] that infects the [[:en:Common_chimpanzee|chimpanzee]] subspecies ''Pan troglodytes troglodytes'' (SIVcpz) or closely related to the SIV that infects [[:en:Western_lowland_gorilla|western lowland gorillas]] (''Gorilla gorilla gorilla''), called SIVgor.<ref name="Keele">{{cite journal|title=Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV-1|journal=Science|year=2006|volume=313|issue=5786|pages=523–26|bibcode=2006Sci...313..523K|doi=10.1126/science.1126531|pmc=2442710|pmid=16728595|vauthors=Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, Peeters M, Hahn BH|author-link16=Paul M. Sharp}}</ref><ref>{{cite news|url=https://www.usatoday.com/news/health/2006-05-25-hiv-cameroon_x.htm|title=HIV's ancestry traced to wild chimps in Cameroon|date=2006-05-25|work=USA Today|access-date=2010-05-20}}</ref><ref name="VanHeuv">{{cite journal|title=Human immunodeficiency viruses: SIV infection in wild gorillas|journal=Nature|year=2006|volume=444|issue=7116|page=164|bibcode=2006Natur.444..164V|doi=10.1038/444164a|pmid=17093443|vauthors=Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, Liegeois F, Bienvenue Y, Ngolle EM, Sharp PM, Shaw GM, Delaporte E, Hahn BH, Peeters M|author-link12=Paul M. Sharp|s2cid=27475571}}</ref><ref name="Plantier">{{cite journal|title=A new human immunodeficiency virus derived from gorillas|journal=Nature Medicine|year=2009|volume=15|issue=8|pages=871–72|doi=10.1038/nm.2016|pmid=19648927|vauthors=Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V, Damond F, Robertson DL, Simon F|s2cid=76837833}}</ref><ref name="Sharp2001">{{cite journal|title=The origins of acquired immune deficiency syndrome viruses: where and when?|journal=Philosophical Transactions of the Royal Society B: Biological Sciences|year=2001|volume=356|issue=1410|pages=867–76|doi=10.1098/rstb.2001.0863|pmc=1088480|pmid=11405934|vauthors=Sharp PM, Bailes E, Chaudhuri RR, Rodenburg CM, Santiago MO, Hahn BH|author-link1=Paul M. Sharp}}</ref><ref name="Takebe2008">{{cite book|title=HIV-1: Molecular Biology and Pathogenesis|last1=Takebe|first1=Y|last2=Uenishi|first2=R|year=2008|editor-last=Jeang|editor-first=Kuan-Teh|series=Advances in Pharmacology|volume=56|pages=1–25|chapter=Global Molecular Epidemiology of HIV: Understanding the Genesis of AIDS Pandemic|doi=10.1016/S1054-3589(07)56001-1|isbn=978-0123736017|pmid=18086407|last3=Li|first3=X}}</ref> The pandemic HIV-1 strain (group M or Main) and a rare strain found only in a few Cameroonian people (group N) are clearly derived from SIVcpz strains endemic in ''Pan troglodytes troglodytes'' [[:en:Common_chimpanzee|chimpanzee]] populations living in [[:en:Cameroon|Cameroon]].<ref name="Keele" /> Another very rare HIV-1 strain (group P) is clearly derived from SIVgor strains of Cameroon.<ref name="Plantier" /> Finally, the primate ancestor of HIV-1 group O, a strain infecting 100,000 people mostly from Cameroon but also from neighbouring countries, was confirmed in 2006 to be SIVgor.<ref name="VanHeuv" /> The pandemic HIV-1 group M is most closely related to the SIVcpz collected from the southeastern rain forests of Cameroon (modern [[:en:East_Province_(Cameroon)|East Province]]) near the [[:en:Sangha_River|Sangha River]].<ref name="Keele" /> Thus, this region is presumably where the virus was first transmitted from chimpanzees to humans. However, reviews of the epidemiological evidence of early HIV-1 infection in stored blood samples, and of old cases of AIDS in Central Africa, have led many scientists to believe that HIV-1 group M early human centre was probably not in Cameroon, but rather further south in the [[:en:Democratic_Republic_of_the_Congo|Democratic Republic of the Congo]] (then the [[:en:Belgian_Congo|Belgian Congo]]), more probably in its capital city, [[:en:Kinshasa|Kinshasa]] (formerly Léopoldville).<ref name="Keele" /><ref name="Gao">{{cite journal|title=Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes|journal=Nature|year=1999|volume=397|issue=6718|pages=436–41|bibcode=1999Natur.397..436G|doi=10.1038/17130|pmid=9989410|vauthors=Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH|s2cid=4432185}}</ref><ref name="Sousa2010">{{cite journal|title=High GUD Incidence in the Early 20th century Created a Particularly Permissive Time Window for the Origin and Initial Spread of Epidemic HIV Strains|journal=PLOS ONE|year=2010|volume=5|issue=4|pages=e9936|bibcode=2010PLoSO...5.9936S|doi=10.1371/journal.pone.0009936|pmc=2848574|pmid=20376191|vauthors=de Sousa JD, Müller V, Lemey P, Vandamme AM}}</ref>

Using [[:en:HIV-1|HIV-1]] sequences preserved in human biological samples along with estimates of viral mutation rates, scientists calculate that the jump from chimpanzee to human probably happened during the late 19th or early 20th century, a time of rapid urbanisation and colonisation in equatorial Africa. Exactly when the [[:en:Zoonosis|zoonosis]] occurred is not known. Some molecular dating studies suggest that HIV-1 group M had its [[:en:Most_recent_common_ancestor|most recent common ancestor]] (MRCA) (that is, started to spread in the human population) in the early 20th century, probably between 1915 and 1941.<ref name="Salemi">{{cite journal|title=Dating the common ancestor of SIVcpz and HIV-1 group M and the origin of HIV-1 subtypes by using a new method to uncover clock-like molecular evolution|journal=The FASEB Journal|url=https://semanticscholar.org/paper/05ea8a3cedc1d731652e43514708b8b65443ddaa|year=2000|volume=15|issue=2|pages=276–78|doi=10.1096/fj.00-0449fje|pmid=11156935|vauthors=Salemi M, Strimmer K, Hall WW, Duffy M, Delaporte E, Mboup S, Peeters M, Vandamme AM|s2cid=35457733}}</ref><ref name="Korber">{{cite journal|title=Timing the Ancestor of the HIV-1 Pandemic Strains|journal=Science|url=https://zenodo.org/record/1231201|year=2000|volume=288|issue=5472|pages=1789–96|bibcode=2000Sci...288.1789K|doi=10.1126/science.288.5472.1789|pmid=10846155|vauthors=Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, Hahn BH, Wolinsky S, Bhattacharya T}}</ref><ref name="Lemey2004">{{cite journal|title=The Molecular Population Genetics of HIV-1 Group O|journal=Genetics|year=2004|volume=167|issue=3|pages=1059–68|doi=10.1534/genetics.104.026666|pmc=1470933|pmid=15280223|vauthors=Lemey P, Pybus OG, Rambaut A, Drummond AJ, Robertson DL, Roques P, Worobey M, Vandamme AM}}</ref> A study published in 2008, analyzing viral sequences recovered from a biopsy made in Kinshasa, in 1960, along with previously known sequences, suggested a common ancestor between 1873 and 1933 (with central estimates varying between 1902 and 1921).<ref name="Worobey2008">{{cite journal|title=Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960|journal=Nature|year=2008|volume=455|issue=7213|pages=661–64|bibcode=2008Natur.455..661W|doi=10.1038/nature07390|pmc=3682493|pmid=18833279|vauthors=Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe JJ, Kabongo JM, Kalengayi RM, Van Marck E, Gilbert MT, Wolinsky SM}}</ref> [[:en:Genetic_recombination|Genetic recombination]] had earlier been thought to "seriously confound" such phylogenetic analysis, but later "work has suggested that recombination is not likely to systematically bias [results]", although recombination is "expected to increase variance".<ref name="Worobey2008" /> The results of a 2008 phylogenetics study support the later work and indicate that HIV evolves "fairly reliably".<ref name="Worobey2008" /><ref name="BBCNature">[http://news.bbc.co.uk/1/hi/health/7646255.stm Colonial clue to the rise of HIV]. BBC News. Retrieved 20-1-2009.</ref> Further research was hindered due to the primates being critically endangered. Sample analyses resulted in little data due to the rarity of experimental material. The researchers, however, were able to hypothesize a phylogeny from the gathered data. They were also able to use the [[:en:Molecular_clock|molecular clock]] of a specific strain of HIV to determine the initial date of transmission, which is estimated to be around 1915–1931.<ref>Sharp, Paul, Elizabeth Bailes, Roy Chaudhuri, et al. "The Origins of Acquired Immune Deficiency Syndrome Viruses: Where and When?" The Royal Society (2001): 867–76. Print.</ref>


== 각주 ==
== 각주 ==

2021년 7월 2일 (금) 17:10 판

후천면역결핍증후군/에이즈(AIDS)는 중부와 서부 아프리카 영장류(인간제외)로부터 기인한 인간면역결핍 바이러스(HIV)에 의해 생긴다. 바이러스의 다양한 소집단들은 각기 인간에 대한 감염성을 다른 시기에 얻었지만, 국제적 대유행은 한가지로부터 기인했다. 구체적으로, 1920년대에 벨기안 콩고의 레오폴드빌 (현재는 콩고 민주 공화국킨샤사)에서 시작된 HIV-1 - 소집단 M이라는 구체적인 계통으로부터 유래하였다. [1]


두 가지의 HIV가 있다: HIV-1과 HIV-2가 있다. HIV-1은 보다 유독하며, 쉽게 전파되기 떄문에 세계적으로 수많은 HIV 감염을 일으키는 원인이 되었다. 세계적인 유행병을 일으킨 HIV-1의 종류는 Pan troglodytes troglodytes 라고 하는 침팬지의 아종에서 찾아볼 수 있는 구체적인 바이러스와 매우 밀접하게 관련되어 있다. 해당 아종은 중부 아프리카 국가들의 숲에 살고 있으며, 국가의 예시로는 카메룬(Cameroon,) 적도기니(Equatorial Guinea), 가본(Gabon), 콩고공화국(the Republic of the Congo) 혹은 (콩고-브라자빌 : Congo-Brazzaville) 그리고 중앙 아프리카 공화국(Central African Republic)이 있다. HIV-2는 보다 덜 전파적이고 대부분 그것의 친척 바이러스와 함께 서부 아프리카의 검댕맹거베이(Sooty mangabey - Cercocebus atys atys)라고 하는 긴꼬리원숭이(Old World monkey)에 묶여있다. 대표적인 국가 예시로는 남쪽 세네갈(Senegal,) 기니-비사우(Guinea-Bissau), 기니(Guinea), 시에라리온(Sierra Leone), 리베리아(Liberia) 그리고 서부 상아해안(코트디부아르의 해안)에 해당 원숭이가 서식한다. [2][3]

비-인간에서 인간으로 전파

대부분의 HIV 연구자들은 HIV가 어느 시점에서 진화했다고 동의한다. 이 시점은 원숭이 면역결핍증 바이러스(SIV)와 밀접하게 관련되어 있다. SIV 혹은 HIV(돌연변이 후)가 비-인간 영장류로부터 인간으로 전파된것이 비교적 최근이라고 주장한다. ( 즉, 인수공통감염병의 한 종류인 것이다.) 이 분야의 연구는 분자적 계통학을 이용하여 연구되고 있으며, 바이러스들의 게놈 시퀀스를 서로 비교하여 연관성을 찾아내고자 한다.

침팬지와 고릴라에서 인간으로 HIV의 이동

과학자들은 일반적으로 HIV-1 그룹이 중앙 아프리카 숲(West Central African forests) 고유의 Simian 면역 결핍 바이러스(simian immunodeficiency viruses)

HIV-1 from chimpanzees and gorillas to humans

Scientists generally accept that the known strains (or groups) of HIV-1 are most closely related to the simian immunodeficiency viruses (SIVs) endemic in wild ape populations of West Central African forests.[4][5] In particular, each of the known HIV-1 strains is either closely related to the SIV that infects the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpz) or closely related to the SIV that infects western lowland gorillas (Gorilla gorilla gorilla), called SIVgor.[6][7][8][9][10][11] The pandemic HIV-1 strain (group M or Main) and a rare strain found only in a few Cameroonian people (group N) are clearly derived from SIVcpz strains endemic in Pan troglodytes troglodytes chimpanzee populations living in Cameroon.[6] Another very rare HIV-1 strain (group P) is clearly derived from SIVgor strains of Cameroon.[9] Finally, the primate ancestor of HIV-1 group O, a strain infecting 100,000 people mostly from Cameroon but also from neighbouring countries, was confirmed in 2006 to be SIVgor.[8] The pandemic HIV-1 group M is most closely related to the SIVcpz collected from the southeastern rain forests of Cameroon (modern East Province) near the Sangha River.[6] Thus, this region is presumably where the virus was first transmitted from chimpanzees to humans. However, reviews of the epidemiological evidence of early HIV-1 infection in stored blood samples, and of old cases of AIDS in Central Africa, have led many scientists to believe that HIV-1 group M early human centre was probably not in Cameroon, but rather further south in the Democratic Republic of the Congo (then the Belgian Congo), more probably in its capital city, Kinshasa (formerly Léopoldville).[6][12][13]

Using HIV-1 sequences preserved in human biological samples along with estimates of viral mutation rates, scientists calculate that the jump from chimpanzee to human probably happened during the late 19th or early 20th century, a time of rapid urbanisation and colonisation in equatorial Africa. Exactly when the zoonosis occurred is not known. Some molecular dating studies suggest that HIV-1 group M had its most recent common ancestor (MRCA) (that is, started to spread in the human population) in the early 20th century, probably between 1915 and 1941.[14][15][16] A study published in 2008, analyzing viral sequences recovered from a biopsy made in Kinshasa, in 1960, along with previously known sequences, suggested a common ancestor between 1873 and 1933 (with central estimates varying between 1902 and 1921).[17] Genetic recombination had earlier been thought to "seriously confound" such phylogenetic analysis, but later "work has suggested that recombination is not likely to systematically bias [results]", although recombination is "expected to increase variance".[17] The results of a 2008 phylogenetics study support the later work and indicate that HIV evolves "fairly reliably".[17][18] Further research was hindered due to the primates being critically endangered. Sample analyses resulted in little data due to the rarity of experimental material. The researchers, however, were able to hypothesize a phylogeny from the gathered data. They were also able to use the molecular clock of a specific strain of HIV to determine the initial date of transmission, which is estimated to be around 1915–1931.[19]

각주

  1. Gallagher, James (2014년 10월 2일). “Aids: Origin of pandemic 'was 1920s Kinshasa'. BBC. 
  2. Reeves JD, Doms RW (2002). "Human immunodeficiency virus type 2". The Journal of General Virology. 83 (Pt 6): 1253–65. doi:10.1099/0022-1317-83-6-1253. PMID 12029140.
  3. Santiago ML, Range F, Keele BF, Li Y, Bailes E, Bibollet-Ruche F, Fruteau C, Noë R, Peeters M, Brookfield JF, Shaw GM, Sharp PM, Hahn BH (2005). "Simian Immunodeficiency Virus Infection in Free-Ranging Sooty Mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d'Ivoire: Implications for the Origin of Epidemic Human Immunodeficiency Virus Type 2".Journal of Virology. 79 (19): 12515–27. doi:10.1128/JVI.79.19.12515-12527.2005. PMC 1211554. PMID 16160179.
  4. Sharp, Paul M.; Hahn, Beatrice H. (2010년 8월 27일). “The evolution of HIV-1 and the origin of AIDS”. 《Philosophical Transactions of the Royal Society B: Biological Sciences》 (The Royal Society) 365 (1552): 2487–2494. doi:10.1098/rstb.2010.0031. ISSN 0962-8436. PMC 2935100. PMID 20643738. 
  5. Takehisa, Jun; Kraus, Matthias H.; Ayouba, Ahidjo; Bailes, Elizabeth; Van Heuverswyn, Fran; Decker, Julie M.; Li, Yingying; Rudicell, Rebecca S.; Learn, Gerald H.; Neel, Cecile; Ngole, Eitel Mpoudi; Shaw, George M.; Peeters, Martine; Sharp, Paul M.; Hahn, Beatrice H. (2008년 12월 10일). “Origin and Biology of Simian Immunodeficiency Virus in Wild-Living Western Gorillas”. 《Journal of Virology》 (American Society for Microbiology) 83 (4): 1635–1648. doi:10.1128/jvi.02311-08. ISSN 0022-538X. PMC 2643789. PMID 19073717. 
  6. Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J, Santiago ML, Bibollet-Ruche F, Chen Y, Wain LV, Liegeois F, Loul S, Ngole EM, Bienvenue Y, Delaporte E, Brookfield JF, Sharp PM, Shaw GM, Peeters M, Hahn BH (2006). “Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV-1”. 《Science》 313 (5786): 523–26. Bibcode:2006Sci...313..523K. doi:10.1126/science.1126531. PMC 2442710. PMID 16728595. 
  7. “HIV's ancestry traced to wild chimps in Cameroon”. 《USA Today》. 2006년 5월 25일. 2010년 5월 20일에 확인함. 
  8. Van Heuverswyn F, Li Y, Neel C, Bailes E, Keele BF, Liu W, Loul S, Butel C, Liegeois F, Bienvenue Y, Ngolle EM, Sharp PM, Shaw GM, Delaporte E, Hahn BH, Peeters M (2006). “Human immunodeficiency viruses: SIV infection in wild gorillas”. 《Nature》 444 (7116): 164. Bibcode:2006Natur.444..164V. doi:10.1038/444164a. PMID 17093443. S2CID 27475571. 
  9. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemée V, Damond F, Robertson DL, Simon F (2009). “A new human immunodeficiency virus derived from gorillas”. 《Nature Medicine》 15 (8): 871–72. doi:10.1038/nm.2016. PMID 19648927. S2CID 76837833. 
  10. Sharp PM, Bailes E, Chaudhuri RR, Rodenburg CM, Santiago MO, Hahn BH (2001). “The origins of acquired immune deficiency syndrome viruses: where and when?”. 《Philosophical Transactions of the Royal Society B: Biological Sciences》 356 (1410): 867–76. doi:10.1098/rstb.2001.0863. PMC 1088480. PMID 11405934. 
  11. Takebe, Y; Uenishi, R; Li, X (2008). 〈Global Molecular Epidemiology of HIV: Understanding the Genesis of AIDS Pandemic〉. Jeang, Kuan-Teh. 《HIV-1: Molecular Biology and Pathogenesis》. Advances in Pharmacology 56. 1–25쪽. doi:10.1016/S1054-3589(07)56001-1. ISBN 978-0123736017. PMID 18086407. 
  12. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1999). “Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes”. 《Nature》 397 (6718): 436–41. Bibcode:1999Natur.397..436G. doi:10.1038/17130. PMID 9989410. S2CID 4432185. 
  13. de Sousa JD, Müller V, Lemey P, Vandamme AM (2010). “High GUD Incidence in the Early 20th century Created a Particularly Permissive Time Window for the Origin and Initial Spread of Epidemic HIV Strains”. 《PLOS ONE》 5 (4): e9936. Bibcode:2010PLoSO...5.9936S. doi:10.1371/journal.pone.0009936. PMC 2848574. PMID 20376191. 
  14. Salemi M, Strimmer K, Hall WW, Duffy M, Delaporte E, Mboup S, Peeters M, Vandamme AM (2000). “Dating the common ancestor of SIVcpz and HIV-1 group M and the origin of HIV-1 subtypes by using a new method to uncover clock-like molecular evolution”. 《The FASEB Journal》 15 (2): 276–78. doi:10.1096/fj.00-0449fje. PMID 11156935. S2CID 35457733. 
  15. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, Hahn BH, Wolinsky S, Bhattacharya T (2000). “Timing the Ancestor of the HIV-1 Pandemic Strains”. 《Science》 288 (5472): 1789–96. Bibcode:2000Sci...288.1789K. doi:10.1126/science.288.5472.1789. PMID 10846155. 
  16. Lemey P, Pybus OG, Rambaut A, Drummond AJ, Robertson DL, Roques P, Worobey M, Vandamme AM (2004). “The Molecular Population Genetics of HIV-1 Group O”. 《Genetics》 167 (3): 1059–68. doi:10.1534/genetics.104.026666. PMC 1470933. PMID 15280223. 
  17. Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe JJ, Kabongo JM, Kalengayi RM, Van Marck E, Gilbert MT, Wolinsky SM (2008). “Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960”. 《Nature》 455 (7213): 661–64. Bibcode:2008Natur.455..661W. doi:10.1038/nature07390. PMC 3682493. PMID 18833279. 
  18. Colonial clue to the rise of HIV. BBC News. Retrieved 20-1-2009.
  19. Sharp, Paul, Elizabeth Bailes, Roy Chaudhuri, et al. "The Origins of Acquired Immune Deficiency Syndrome Viruses: Where and When?" The Royal Society (2001): 867–76. Print.