코시 적분 정리: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
ArthurBot (토론 | 기여)
Sosehe2 (토론 | 기여)
7번째 줄: 7번째 줄:
이다.
이다.


==Cauchy의 적분공식==
==코시의 적분공식==
<math>f\left( z \right)</math>가 단순연결 영역 D에서 해석적이면, D에 있는 임의의 점 <math>z_{0}</math>와 <math>z_{0}</math>를 둘러싸고 있는 D안의 임의의 단순 닫힌 곡선 <math>C</math>에 대하여
<math>f\left( z \right)</math>가 단순연결 영역 D에서 해석적이면, D에 있는 임의의 점 <math>z_{0}</math>와 <math>z_{0}</math>를 둘러싸고 있는 D안의 임의의 단순 닫힌 곡선 <math>C</math>에 대하여
:<math>\oint\limits_{C}{\frac{f\left( z \right)}{z-z_{0}}}dz=2\pi if\left( z_{0} \right)</math>
:<math>\oint\limits_{C}{\frac{f\left( z \right)}{z-z_{0}}}dz=2\pi if\left( z_{0} \right)</math>

2009년 6월 24일 (수) 14:50 판

코시의 적분정리(Cauchy's integral theorem)은 복소선적분에서의 중요한 정리 중 하나이다. 복소함수의 선적분은 양 끝점에만 좌우되는 것이 아니라, 경로 자체의 선택에도 의존한다. 만약 복소함수가 영역 D에서 해석적이고 D가 단순 연결 되었다면, 주어진 점들 사이의 경로선택에 의존하지 않는다. 이로써 복소선적분의 경로의존성으로부터 벗어날 수 있다.

정의

가 단순연결 정의역 D에서 해석적이면, D에 있는 모든 단순 닫힌 곡선 에 대하여

이다.

코시의 적분공식

가 단순연결 영역 D에서 해석적이면, D에 있는 임의의 점 를 둘러싸고 있는 D안의 임의의 단순 닫힌 곡선 에 대하여

가 성립된다. 여기서 적분의 방향은 반시계 방향이다. 다음과 같이 표현할 수도 있다.