내적 공간: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
잔글편집 요약 없음
편집 요약 없음
149번째 줄: 149번째 줄:
* {{nlab|id=inner product space|title=Inner product space}}
* {{nlab|id=inner product space|title=Inner product space}}
* {{웹 인용|url=https://math.stackexchange.com/questions/21792/norms-induced-by-inner-products-and-the-parallelogram-law|제목=Norms Induced by Inner Products and the Parallelogram Law|웹사이트=Stack Exchange|언어=en}}
* {{웹 인용|url=https://math.stackexchange.com/questions/21792/norms-induced-by-inner-products-and-the-parallelogram-law|제목=Norms Induced by Inner Products and the Parallelogram Law|웹사이트=Stack Exchange|언어=en}}

{{선형대수학}}


[[분류:노름 공간]]
[[분류:노름 공간]]

2020년 3월 2일 (월) 12:05 판

내적을 사용하여 정의한, 두 벡터 사이의 각도의 기하학적 해석

선형대수학함수해석학에서, 내적 공간(內積空間, 영어: inner product space)은 두 벡터의 쌍에 스칼라를 대응시키는 일종의 함수가 주어진 벡터 공간이다. 내적 공간 위에서는 벡터의 길이각도 등의 개념을 다룰 수 있다. 스칼라 곱을 갖춘 유클리드 공간의 일반화이다.

정의

실수체 또는 복소수체라고 하자.

-벡터 공간 위의 내적(內積, 영어: inner product)은 양의 정부호 에르미트 반쌍선형 형식이다. (실수의 경우 이는 양의 정부호 대칭 쌍선형 형식과 같다.) 즉, 다음 조건들을 만족시키는 함수

이다.

  • (양의 정부호성) 임의의 에 대하여,
  • (에르미트성) 임의의 에 대하여,
  • (왼쪽 선형성) 임의의 에 대하여,

이들 성질로부터 내적의 다음과 같은 성질을 유도할 수 있다.

  • (오른쪽 반쌍선형성) 임의의 에 대하여,

내적이 주어진 -벡터 공간 -내적 공간이라고 한다.

성질

극화 항등식

-내적 공간 위에 자연스러운 -노름 공간 구조를 다음과 같이 줄 수 있다.

증명:

노름의 양의 정부호성과 양의 동차성은 내적의 정의에 따라 자명하다. 노름의 삼각 부등식코시-슈바르츠 부등식의 따름정리이며, 그 증명은 다음과 같다. 임의의 벡터 에 대하여,

이므로,

반대로, -노름 공간-내적 공간으로부터 유도될 필요충분조건은 평행 사변형 법칙

이다. 이 경우, 가능한 유일한 내적은 다음과 같으며, 이를 극화 항등식(極化恒等式, 영어: polarization identity)이라고 한다.

증명:

실수 내적 공간의 경우만을 증명하자. 극화 항등식이 정의한 내적이 다음 네 가지를 보이는 것으로 족하다.

첫째와 둘째 조건은 자명하다. 셋째 조건은 다음과 같이 증명된다.

넷째 조건의 의 경우는 다음과 같이 증명된다.

또한, 일 경우의 증명은 다음과 같다.

만약 일 경우, ()이라고 하자. 그렇다면, 다음과 같이 증명된다.

마지막으로, 일 경우는 를 고정하였을 때 가 연속 함수임에 따라 성립한다.

코시-슈바르츠 부등식

내적 공간 의 벡터 에 대하여, 다음과 같은 부등식이 성립하며, 이를 코시-슈바르츠 부등식이라고 한다.

이에 따라, 두 벡터 사이의 각도를 다음과 같이 정의할 수 있다.

또한, 내적이 유도하는 노름의 삼각 부등식은 코시-슈바르츠 부등식을 통해 증명된다.

정규 직교 기저

내적 공간 정규 직교 기저(正規直交基底, 영어: orthonormal basis)는 서로 다른 두 벡터의 내적이 항상 0인 단위 벡터들이 이루는 기저이다. 즉, 이는 다음 조건들을 만족시키는 기저 이다.

  • (직교성) 만약 이며 라면,
  • (정규성) 임의의 에 대하여,

유한 차원 내적 공간의 정규 직교 기저는 항상 존재한다. 이는 그람-슈미트 과정을 통해 구성할 수 있다.

내적 공간 의 벡터 의 정규 직교 기저 에 대한 좌표는 다음과 같다.

또한, 이 좌표 아래 내적을 다음과 같이 나타낼 수 있다.

내적 공간 속의 유한 정규 직교 집합 및 벡터 에 대하여, 베셀 부등식과 유사한 꼴의 다음과 같은 부등식이 성립한다.

선형 범함수

유한 차원 내적 공간 의 모든 선형 범함수는 어떤 유일한 고정된 벡터 와의 내적

이다. 구체적으로, 정규 직교 기저 가 주어졌을 때, 선형 범함수 를 나타내는 벡터는 다음과 같다.

이에 따라, 유한 차원 내적 공간의 선형 변환 수반 선형 변환 은 다음과 같이 항상 존재한다.

그러나 무한 차원 내적 공간의 경우 일반적으로 성립하지 않는다. 예를 들어, 다항식환 에 다음과 같은 내적을 정의할 수 있다.

이 경우, 임의의 가 주어졌을 때, 다음과 같은 선형 범함수는 고정된 벡터와의 내적으로 나타낼 수 없다.

또한 미분 선형 변환

의 수반 선형 변환은 존재하지 않는다.

유클리드 공간

유클리드 공간 또는 유니터리 공간 의 표준적인 내적은 다음과 같다. 유클리드 공간의 경우 이를 스칼라 곱이라고 한다.

이 내적이 유도하는 노름은 2 노름이다. 그러나 의 경우, p 노름은 평행 사변형 법칙을 만족시키지 않으므로 내적으로부터 유도될 수 없다.

마찬가지로, 실수 또는 복소수 행렬의 공간 에는 다음과 같은 내적을 정의할 수 있다.

보다 일반적으로, 만약 양의 정부호 행렬일 경우, 에 다음과 같은 내적을 정의할 수 있다.

함수 공간

연속 함수의 공간 에는 다음과 같은 내적을 정의할 수 있다.

또한, 다음과 같은 내적을 정의할 수도 있다.

같이 보기

참고 문헌

외부 링크