전기 분해: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
새로운 하위 분류 추가
20번째 줄: 20번째 줄:


== 유기물 수전해 ==
== 유기물 수전해 ==
수소를 연료로써 사용하기 위해서 현재 많은 관심을 받고 있는 방법은 신재생에너지로 부터 전력을 공급받아 물전분해장치를 통한 수소발생이다. 하지만 물전기분해시 매우 높은 과전압(E°rev = 1.23 V)을 필요로 하게 되어 전체적으로 시스템 효율을 낮추는 영향을 미치고 있다. 이런 이유로 물전기분해 장치의 스택은 4.2 kWh m−3의 전력이 요구되며, 실제 상용 시스템의 경우 6 kWh m−3 이상의 전력을 필요로 한다.<ref>S.P.S. Badwal et al., Hydrogen production via solid electrolytic routes, WIREs Energy Environ., 2 (2013) 473–487 [[doi:10.1002/wene.50]]</ref> 유기물수전해 (organic solution assisted water electrolysis) 방식은 이를 보완하고자 알코올류 (에탄올,<ref>H. Ju et al., Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation, Electrochimica Acta 212 (2016) 744-757 [[doi:10.1016/j.electacta.2016.07.062]]</ref> 메탄올<ref> S. Uhm, H. Jeon, T.J. Kim, J. Lee, Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process, J. Power Sources 198 (2012) 218–222, [[doi:[[doi:10.1016/j.electacta.2011.11.006]]</ref>), 글리세롤, 개미산 <ref>C. Lamy et al, Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC), Electrochimica Acta 60 (2012) 112-120 [[doi:10.1016/j.electacta.2011.11.006]]</ref> 등의 유기물과 물을 혼합한 연료를 이용하여 전기분해를 통해서 수소를 얻는 방법이 최근 다각도로 연구되고 있다.
수소를 연료로써 사용하기 위해서 현재 많은 관심을 받고 있는 방법은 신재생에너지로 부터 전력을 공급받아 물전분해장치를 통한 수소발생이다. 하지만 물전기분해시 매우 높은 과전압(E°rev = 1.23 V)을 필요로 하게 되어 전체적으로 시스템 효율을 낮추는 영향을 미치고 있다. 이런 이유로 물전기분해 장치의 스택은 4.2 kWh m−3의 전력이 요구되며, 실제 상용 시스템의 경우 6 kWh m−3 이상의 전력을 필요로 한다.<ref>S.P.S. Badwal et al., Hydrogen production via solid electrolytic routes, WIREs Energy Environ., 2 (2013) 473–487 [[doi:10.1002/wene.50]]</ref> 유기물수전해 (organic solution assisted water electrolysis) 방식은 이를 보완하고자 알코올류 (에탄올,<ref>H. Ju et al., Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation, Electrochimica Acta 212 (2016) 744-757 [[doi:10.1016/j.electacta.2016.07.062]]</ref> 메탄올<ref> S. Uhm, H. Jeon, T.J. Kim, J. Lee, Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process, J. Power Sources 198 (2012) 218–222, [[doi:10.1016/j.electacta.2011.11.006]]</ref>), 글리세롤, 개미산 <ref>C. Lamy et al, Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC), Electrochimica Acta 60 (2012) 112-120 [[doi:10.1016/j.electacta.2011.11.006]]</ref> 등의 유기물과 물을 혼합한 연료를 이용하여 전기분해를 통해서 수소를 얻는 방법이 최근 다각도로 연구되고 있다.


== 실험자 목록 ==
== 실험자 목록 ==

2016년 9월 29일 (목) 07:59 판

학교 실험실에서 쓰이는 전기 분해 기구의 모습.

전기분해(電氣分解, 영어: electrolysis)는 시료에 전압을 걸어 화학 반응이 일어나도록 하는 것이다. 더 구체적으로 말해 화합물에 충분히 높은 전압을 걸어 전기 화학적으로 산화 환원 반응을 일으키는 것을 말한다. 전기분해는 우리 생활에 그렇게 가깝지는 않지만 미래에 발전성이 큰 방법이다.

물전기분해 (수전해)

을 전기 분해할 때 +극과 -극에서 발생하는 기체의 성질을 확인할 수 있다. 수산화나트륨[1]을 조금 넣은 물에 전류를 흘려 준 후 생성 물질을 확인할 수 있다. 물의 공유 결합이 끊어지면서 물은 수소와 산소로 전기 분해된다.

각 전극에서 일어나는 반응
구분 환원 전극 산화 전극
반응식 2H2O(l) + 2e- → H2(g) + 2OH-(aq) H2O(l) → O2(g)+ 2H+(aq) + 2e-
발생하는 기체 수소 산소
주위의 액성 OH-이 생성되므로 염기성 용액 H+이 생성되므로 산성 용액
전체 반응

2H2O(l) → 2H2(g) + O2(g)

H2와 O2의 계수비가 2:1이므로 발생하는 수소:산소 기체의 부피비 = 2:1

유기물 수전해

수소를 연료로써 사용하기 위해서 현재 많은 관심을 받고 있는 방법은 신재생에너지로 부터 전력을 공급받아 물전분해장치를 통한 수소발생이다. 하지만 물전기분해시 매우 높은 과전압(E°rev = 1.23 V)을 필요로 하게 되어 전체적으로 시스템 효율을 낮추는 영향을 미치고 있다. 이런 이유로 물전기분해 장치의 스택은 4.2 kWh m−3의 전력이 요구되며, 실제 상용 시스템의 경우 6 kWh m−3 이상의 전력을 필요로 한다.[2] 유기물수전해 (organic solution assisted water electrolysis) 방식은 이를 보완하고자 알코올류 (에탄올,[3] 메탄올[4]), 글리세롤, 개미산 [5] 등의 유기물과 물을 혼합한 연료를 이용하여 전기분해를 통해서 수소를 얻는 방법이 최근 다각도로 연구되고 있다.

실험자 목록

각주

  1. 순수한 물은 전류가 흐르지 않기 때문에 전해질인 수산화나트륨이나 황산나트륨을 조금 넣어 전류를 잘 흐르게 하기 위해서이다. 그러나 황산구리(CuSO4)를 물에 넣으면 H+보다 양이온이 되려는 경향이 작은 Cu2+이 먼저 전자를 얻어 Cu로 변한다. 따라서 CuSO4는 전해질이지만 물을 전기 분해할 때 넣어줄 수 없다.(마찬가지로 CuCl2, AgNO3 도 넣어 줄 수 없다. Cl,- Ag+이 존재하는 전해질을 물에 넣은 후 전류를 흘려 주면 전해질이 전기 분해되기 때문이다. 물을 전기 분해할 때에는 수산화나트륨, 황산나트륨 이외에도 탄산나트륨, 황산, 질산칼륨 등의 전해질을 넣어줄 수 있다.
  2. S.P.S. Badwal et al., Hydrogen production via solid electrolytic routes, WIREs Energy Environ., 2 (2013) 473–487 doi:10.1002/wene.50
  3. H. Ju et al., Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation, Electrochimica Acta 212 (2016) 744-757 doi:10.1016/j.electacta.2016.07.062
  4. S. Uhm, H. Jeon, T.J. Kim, J. Lee, Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process, J. Power Sources 198 (2012) 218–222, doi:10.1016/j.electacta.2011.11.006
  5. C. Lamy et al, Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC), Electrochimica Acta 60 (2012) 112-120 doi:10.1016/j.electacta.2011.11.006

같이 보기