직교군: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
116번째 줄: 116번째 줄:
:<math>\pi_i(\operatorname O(n))\cong\pi_i(\operatorname O(n+1))</math>
:<math>\pi_i(\operatorname O(n))\cong\pi_i(\operatorname O(n+1))</math>
이다.<ref name="Karoubi">{{서적 인용|제목=Handbook of K-theory. Volume 1|장=Bott periodicity in topological, algebraic and Hermitian K-theory|이름=Max|성=Karoubi|장url=http://www.math.illinois.edu/K-theory/handbook/1-111-138.pdf|url= http://k-theory.org/handbook/|doi=10.1007/978-3-540-27855-9_4|쪽=111–137|언어고리=en}}</ref>{{rp|112}} 즉, 직교군의 [[호모토피 군]]들은 안정화되며, 안정 호모토피 군들은 다음과 같다.<ref name="Karoubi"/>{{rp|113}}
이다.<ref name="Karoubi">{{서적 인용|제목=Handbook of K-theory. Volume 1|장=Bott periodicity in topological, algebraic and Hermitian K-theory|이름=Max|성=Karoubi|장url=http://www.math.illinois.edu/K-theory/handbook/1-111-138.pdf|url= http://k-theory.org/handbook/|doi=10.1007/978-3-540-27855-9_4|쪽=111–137|언어고리=en}}</ref>{{rp|112}} 즉, 직교군의 [[호모토피 군]]들은 안정화되며, 안정 호모토피 군들은 다음과 같다.<ref name="Karoubi"/>{{rp|113}}
:<math>\pi_i(\operatorname O(n))=\begin{cases}0&i\cong2,4,5,6\pmod8\\
:<math>\pi_i(\operatorname O(n))=\begin{cases}0&i\equiv2,4,5,6\pmod8\\
\mathbb Z/2&i\cong0,1\pmod8\\
\mathbb Z/2&i\equiv0,1\pmod8\\
\mathbb Z&i\cong3,7\pmod8
\mathbb Z&i\equiv3,7\pmod8
\end{cases}\qquad(i<n-1)</math>
\end{cases}\qquad(i<n-1)</math>
이 주기성을 '''보트 주기성'''({{llang|en|Bott periodicity}})이라고 한다.
이 주기성을 '''보트 주기성'''({{llang|en|Bott periodicity}})이라고 한다.
125번째 줄: 125번째 줄:
:<math>\operatorname O(\infty)=\varinjlim_n\operatorname O(n)</math>
:<math>\operatorname O(\infty)=\varinjlim_n\operatorname O(n)</math>
무한 유니터리 군의 호모토피 군들은 유한 차원 유니터리 군의 안정 호모토피 군으로 주어진다.
무한 유니터리 군의 호모토피 군들은 유한 차원 유니터리 군의 안정 호모토피 군으로 주어진다.
:<math>\pi_i(\operatorname O(\infty))==\begin{cases}0&i\cong2,4,5,6\pmod8\\
:<math>\pi_i(\operatorname O(\infty))=\begin{cases}0&i\equiv2,4,5,6\pmod8\\
\mathbb Z/2&i\cong0,1\pmod8\\
\mathbb Z/2&i\equiv0,1\pmod8\\
\mathbb Z&i\cong3,7\pmod8
\mathbb Z&i\equiv3,7\pmod8
\end{cases}</math>
\end{cases}</math>
이에 따라, 무한 직교군은 스스로의 8차 [[고리 공간]]과 [[호모토피 동치]]이다.<ref name="Karoubi"/>{{rp|112, Theorem 1}}
이에 따라, 무한 직교군은 스스로의 8차 [[고리 공간]]과 [[호모토피 동치]]이다.<ref name="Karoubi"/>{{rp|112, Theorem 1}}

2015년 6월 27일 (토) 13:24 판

군론에서, 직교군(直交群, 영어: orthogonal group)은 주어진 에 대한 직교행렬리 군이다.

정의

위의 유한 차원 벡터 공간 위에 비퇴화 대칭 이중 선형 형식

가 주어졌다고 하자. (만약 표수가 2가 아니라면, 이는 위의 이차 형식과 같다.) 그렇다면, 직교군 위의 가역 선형 변환들 가운데, 를 보존하는 것들로 구성된 이다.

이는 대수적 조건이므로, 직교군은 체 에 대한 대수군이다. 또한, 만약 가 실수체나 복소수체라면, 직교군은 리 군을 이룬다.

만약 차원 벡터 공간이며, 가 자명한 (양의 정부호) 이차 형식이라면, 이를 로 쓴다.

실수체 위에서는 비퇴화 이차 형식은 계량 부호수 에 의하여 분류된다. 이 경우 직교군은 와 같이 쓴다.

특수직교군

직교군에서 2차 순환군으로 가는 다음과 같은 군 준동형이 존재한다.

.

이 준동형을 딕슨 불변량(Dickson不變量, 영어: Dickson invariant)이라고 한다. 만약 체의 표수가 2가 아니라면 이는 행렬식 과 같다. (표수가 2인 체의 경우, 모든 직교행렬의 행렬식은 1이다.)

특수직교군(特殊直交群, 영어: special orthogonal group) 는 딕슨 불변량의 이다.

.

즉, 딕슨 불변량이 0인 직교행렬의 리 군이다. 만약 체의 표수가 2가 아니라면, 이는 행렬식이 1인 직교행렬의 리 군이 된다. 따라서 특수직교군과 직교군은 다음과 같은 짧은 완전열을 만족한다.

.

스핀 군과 핀 군

특수직교군 에 대하여, 그렇다면 다음 짧은 완전열을 만족시키는 유일한 연결 리 군 이 존재한다.

.

리 군스핀 군(영어: spin group)이라고 한다.

일 경우, 스핀 군은 특수직교군의 전피복공간(universal cover)이다. (일 경우는 물론 이고, 그 전피복공간은 이다.)

마찬가지로, 직교군의 두 겹 피복군인 핀 군(영어: pin group)을 정의할 수 있다. 스핀 군과 핀 군은 다음과 같은 가환 그림을 만족시키며, 이 가환 그림에서 모든 행과 열은 짧은 완전열을 이룬다.

직교 리 대수

실수체 또는 복소수체 위의 직교군은 리 군을 이루며, 이에 대응하는 리 대수를 정의할 수 있다. 이는 또는 와 같이 쓴다 ().

정사각 실수 반대칭 행렬들로 구성된 리 대수이며, 는 정사각 복소수 반대칭 행렬들로 구성된 리 대수이다.

성질

군론적 성질

에 대한 직교군의 중심은 다음과 같다.

만약 의 표수가 2가 아니라면, 중심의 크기는 2이며, 만약 의 표수가 2라면 중심의 크기는 1이다. 체의 표수가 2가 아닐 때, 만약 이 짝수라면 중심의 두 원소 모두 특수직교군에 속하지만, 이 홀수라면 그렇지 않다.

중심에 대하여 몫군을 취하면, 사영 직교군(영어: projective orthogonal group)

을 얻는다.

리 이론적 성질

복소수 리 군 일 경우 단순 리 군이다. 단순 리 군의 분류에서, 이는 만약 이라면 에, 만약 라면 에 해당하며, 그 딘킨 도형은 다음과 같다.

의 콤팩트 실수 형식이다. 분해 실수 형식은 짝수 차수에서는 이며, 홀수 차수에서는 이다.

의 최대 원환면(영어: maximal torus)은 다음과 같다.

여기서

는 2×2 회전 행렬이다. 의 최대 원환면은 다음과 같다.

바일 군반직접곱

이다. 여기서

와 같이 작용하며, 순열

와 같이 작용한다.

위상수학적 성질

실수 직교군 차원의 리 군이며, 콤팩트 공간이다. 두 개의 연결 성분을 가지며, 이들은 각각 행렬식 인 실수 직교행렬들로 구성된다. 그 중 행렬식이 +1인 성분은 연결 공간인 실수 특수직교군 를 이룬다.

복소수 직교군 은 복소수 차원(실수 차원)의 복소수 리 군이자 대수군이다. 인 경우, 복소수 직교군은 콤팩트하지 않다. 복소수 직교군은 두 개의 연결 성분을 가지며, 이는 각각 행렬식이 인 복소수 직교행렬들로 구성된다. 그 중 행렬식이 +1인 성분은 복소수 특수직교군 를 이룬다.

실수 또는 복소수 특수직교군의 기본군은 다음과 같다.

이에 따라, 실수 특수직교군의 범피복 리 군을 취하면 에서는 를, 에서는 스핀 군 을 얻는다.

부정부호 실수 직교군 ()는 네 개의 연결 성분을 가지며,

이다. 여기서 한 차원 부분 공간에서의 방향에 의하여 결정되며, 다른 하나는 차원 부분 공간에서의 방향에 의하여 결정된다. 는 두 개의 연결 성분을 가지며, 이 경우

이다. 의 연결 부분군을 라고 한다.

부정부호 실수 직교군의 기본군은 다음과 같다.

보트 주기성

호프 올뭉치

로 인하여, 만약 이라면

이다.[1]:112 즉, 직교군의 호모토피 군들은 안정화되며, 안정 호모토피 군들은 다음과 같다.[1]:113

이 주기성을 보트 주기성(영어: Bott periodicity)이라고 한다.

이에 따라, 다음과 같은 무한 직교군 을 범주론적 쌍대극한으로 정의할 수 있다.

무한 유니터리 군의 호모토피 군들은 유한 차원 유니터리 군의 안정 호모토피 군으로 주어진다.

이에 따라, 무한 직교군은 스스로의 8차 고리 공간호모토피 동치이다.[1]:112, Theorem 1

무한 차원 분해 가능 실수 힐베르트 공간 의 직교군 와 다르다. 작용소 노름에 의한 위상을 주었을 때, 축약 가능 공간이며, 따라서 모든 호모토피 군이 자명하다.[2]

포함 관계

모든 에 대하여, 다음과 같은 포함 관계가 성립한다.

또한, 예외 단순군에 대하여 다음과 같은 포함 관계가 성립한다.

6차원 이하의 직교군은 다음과 같은 예외적 동형(영어: exceptional isomorphism)을 보인다.

유한체 위에서의 직교군

가 표수가 2가 아닌 유한체라고 하자. 이 경우, 비퇴화 대칭 이중 선형 형식은 정확히 두 개의 동형류가 있다. 이들은 +형−형이라고 불리며, 각각 다음과 같다.[3]:58

만약 소수인 경우, 이차 상호 법칙에 따라서 라는 조건은 −1이 제곱수라는 조건, 즉 −1이 제곱잉여라는 조건과 같다.

홀수 차원에서, 제곱수가 아닌 에 대하여 는 서로 동형이며, 따라서 이 경우 직교군 은 유일하다. 반면 짝수 차원에서는 이것이 성립하지 않으며, 에 대응하는 직교군들은 각각 라고 쓴다.[3]:69–75

표수가 2가 아닌 유한체 (, 소수)의 직교군의 크기는 다음과 같다.[3]:72, (3.30)–(3.32)

표수 2에서의 직교군

표수가 2인 체 위의 직교군은 다음과 같은 특수한 성질을 보인다.

응용

직교군은 물리학에서 널리 응용된다. SO(3) 및 그 피복군 Spin(3)는 3차원 공간의 회전을 나타내며, 그 표현론은 양자역학에 핵심적이다.

특수 상대성 이론에서는 민코프스키 공간의 (중심을 고정시키는) 대칭군인 부정부호 직교군 O(3,1)이 핵심적인 역할을 하며, 이 군을 로런츠 군이라고 한다. 로런츠 군의 표현론은 상대론적 양자장론에서 핵심적이다. 더 시터르 공간반 더 시터르 공간의 대칭군 역시 부정부호 직교군 O(4,1) 및 O(3,2)이다.

등각 장론에서, -차원 시공간의 등각 대칭군은 이다. 이 대칭군이 반 더 시터르 공간의 대칭군과 같다는 사실은 AdS/CFT 대응성에서 핵심적인 역할을 한다.

이 밖에도, SO(10)은 대통일 이론의 게이지 군으로 쓰인다.

참고 문헌

  1. Karoubi, Max. 〈Bott periodicity in topological, algebraic and Hermitian K-theory〉 (PDF). 《Handbook of K-theory. Volume 1》. 111–137쪽. doi:10.1007/978-3-540-27855-9_4. 
  2. Kuiper, Nicolaas H. (1965). “The homotopy type of the unitary group of Hilbert space”. 《Topology》 3 (1): 19–30. doi:10.1016/0040-9383(65)90067-4. 
  3. Wilson, Robert A. (2009). 《The finite simple groups》. Graduate Texts in Mathematics 251. London: Springer. ISBN 978-1-84800-987-5. Zbl 1203.20012. 

바깥 고리

같이 보기