해밍 거리

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

블록 부호 이론에서, 해밍 거리(Hamming距離, 영어: Hamming distance)는 곱집합 위에 정의되는 거리 함수이다. 대략, 같은 길이의 두 문자열에서, 같은 위치에서 서로 다른 기호들이 몇 개인지를 센다.

정의[편집]

다음이 주어졌다고 하자.

그렇다면, 곱집합 위에 다음과 같은 거리 함수를 줄 수 있다.

거리 함수 위의 해밍 거리라고 한다.

만약 아벨 군(예를 들어, 유한체)이라고 할 때, 해밍 무게(영어: Hamming weight)는 영벡터와의 해밍 거리이다.

[편집]

  • '1011101'과 '1001001'사이의 해밍 거리는 2이다. (1011101, 1001001)
  • '2143896'과 '2233796'사이의 해밍 거리는 3이다. (2143896, 2233796)
  • "toned"와 "roses"사이의 해밍 거리는 3이다. (toned, roses)

역사[편집]

리처드 해밍이 1950년에 해밍 부호와 함께 도입하였다.[1]

참고 문헌[편집]

  1. Hamming, Richard W. (1950년 4월). “Error detecting and error correcting codes”. 《Bell Labs Technical Journal》 (영어) 29 (2): 147–160. ISSN 1089-7089. doi:10.1002/j.1538-7305.1950.tb00463.x. 

관련 항목[편집]

외부 링크[편집]