본문으로 이동

포커르-플랑크 방정식

위키백과, 우리 모두의 백과사전.

확률 과정 이론에서, 포커르-플랑크 방정식(Fokker-Planck方程式, 영어: Fokker–Planck equation)은 어떤 이토 확률 과정확률 밀도 함수가 따르는 편미분 방정식이다. 이는 시간에 대하여 1차, 공간에 대하여 2차 편미분 방정식이다. 형식적으로, 슈뢰딩거 방정식윅 회전의 꼴이다.

정의

[편집]

다음이 주어졌다고 하자.

  • 확률 공간
  • 위의 위너 확률 과정
  • 에 대한, 값의 이토 확률 과정 . 또한, 에 대하여 1차 연속 미분 가능 함수이며, 에 대하여 2차 연속 미분 가능 함수라고 하자.

편의상, 다음 행렬을 정의하자. 이는 이토 확률 과정의 분산을 나타낸다.

이 경우, 이 이토 확률 과정에 대응되는 포커르-플랑크 방정식은 함수

에 대한, 다음과 같은 편미분 방정식이다.

(편의상 아인슈타인 표기법을 사용하였다.)

성질

[편집]

이토 확률 과정의, 시간 에서의 확률 밀도 함수 는 포커르-플랑크 방정식을 따른다.

[편집]

위너 확률 과정 , 이토 확률 과정이다. 이 경우 포커르-플랑크 방정식은

가 된다. 이는 위의 열 방정식이다.

역사

[편집]

아드리안 다니얼 포커르(네덜란드어: Adriaan Daniël Fokker, 1887〜1972)와 막스 플랑크가 도입하였다.

같이 보기

[편집]

외부 링크

[편집]