팽르베 방정식

위키백과, 우리 모두의 백과사전.
이동: 둘러보기, 검색

팽르베 방정식(영어: Painlevé transcendents)은 다음의 6개의 2차 비선형 해석적 상미분 방정식을 일컫는다.

(※ α, β, γ, δ는 복소 상수이며, PI ~ PVI 는 방정식의 이름을 나타낸다.)

정의[편집]

이하의 정리는 폴 팽르베에 의한 것이다.

R(a, b, c) 을 a도함수를 계수로 하는, bc유리 함수라고 했을때,
그것이 움직이는 분기점을 갖지 않는다면, 선형방정식, 타원함수의 방정식, 그 외에 구적가능(눈금 없는 자와 컴퍼스만으로 특정 도형의 면적과 같은 면적을 가진 정사각형의 작도가 가능)한 방정식 및 팽르베 방정식 가운데 하나로 전개되게 된다.

바깥 고리[편집]