중복집합: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
잔글편집 요약 없음
11번째 줄: 11번째 줄:
== 연산 ==
== 연산 ==
집합의 연산은 중복집합으로 자연스럽게 확장할 수 있다. 예를 들어, 두 중복집합 <math>(M,\mu_M)</math>, <math>(M',\mu_{M'})</math>의 합집합 <math>M\cup M'</math>과 교집합 <math>M\cap M'</math>은 다음과 같다.
집합의 연산은 중복집합으로 자연스럽게 확장할 수 있다. 예를 들어, 두 중복집합 <math>(M,\mu_M)</math>, <math>(M',\mu_{M'})</math>의 합집합 <math>M\cup M'</math>과 교집합 <math>M\cap M'</math>은 다음과 같다.
:<math>\mu_{M\cup M'}=\max\{\mu,\mu'\}</math>
:<math>\mu_{M\cup M'}=\max\{\mu_M,\mu_{M'}\}</math>
:<math>\mu_{M\cap M'}=\min\{\mu,\mu'\}</math>
:<math>\mu_{M\cap M'}=\min\{\mu_M,\mu_{M'}\}</math>


== 예 ==
== 예 ==

2021년 9월 27일 (월) 02:25 판

수학에서, 중복집합(重複集合, 영어: multiset) 또는 다중집합(多重集合)은 각 원소를 어떤 기수만큼 중복하는 것을 허용하여 집합을 일반화한 개념이다. 중복집합의 원소가 중복된 횟수를 나타내는 기수를 중복도(重複度, 영어: multiplicity)라고 한다. 통상적인 집합은 각 원소의 중복도가 1인 중복집합으로 여길 수 있다. 집합의 연산들을 중복집합에 자연스럽게 확장할 수 있다.

정의

중복집합은 다음과 같은 데이터로 구성되는 순서쌍 이다.

  • 집합 . 그 원소를 중복집합의 원소라고 한다.
  • 기수 값 모임 함수 . 각 에 대하여, 중복도라고 한다. (에 속하지 않는 원소의 중복도는 0이라고 가정한다.)

중복집합 크기는 모든 원소의 중복도의 합이다.

여기서 우변은 기수의 덧셈이다.

연산

집합의 연산은 중복집합으로 자연스럽게 확장할 수 있다. 예를 들어, 두 중복집합 , 의 합집합 과 교집합 은 다음과 같다.

중복집합

는 흔히

로 표기한다. 그 크기는 3+2+4=9이다.

외부 링크