디리클레 급수: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
41번째 줄: 41번째 줄:
* [[리만 제타 함수]]
* [[리만 제타 함수]]
* [[소수 정리]]
* [[소수 정리]]
*[[디리클레 L-급수]]
*[[디리클레 L-함수]]


== 각주 ==
== 각주 ==

2017년 3월 14일 (화) 17:41 판

디리클레 급수(Dirichlet series)는 복소수 , 복소 수열 에 대하여

로 정의되는 급수이다. 디리클레 급수는 해석적 수론(analytic number theory)에서 중요한 위치를 차지하며, 많은 중요한 함수가 디리클레 급수의 형태로 정의되어 있다.

리만 제타 함수는 디리클레 급수의 한 예로, 다음과 같이 정의된다.

리만 제타 함수의 역수는 다음의 디리클레 급수로 표현할 수 있다.

여기서 뫼비우스 함수이다. 또한, 제타함수의 로그는 다음과 같이 표현할 수 있다.

여기서 망골트 함수(Mangoldt function)이다. 또한, 제타함수의 로그도함수(Logarithmic derivative)를 디리클레 급수로 표현하면 다음과 같다.

미분

다음과 같이 주어진 디리클레 급수가 있다고 하자.

이 경우 디리클레 급수의 미분은 다음과 같이 표현된다.

이 결과를 리만 제타 함수에 적용하면 다음과 같이 된다. 실수부가 1보다 클 때, 리만 제타 함수의 정의는 디리클레 급수로 표현된다. 따라서 그 미분을 디리클레 급수로 표현하면 다음과 같다.

여기서 제타함수의 로그도함수를 계산하기 위해서 산술의 기본정리에 의해 즉시 도출되는 다음 등식을 활용한다.

물론 여기서 은 망골트 함수이다. 결국 두 급수를 곱해주면 다음 등식이 성립한다.

이 식은 소수 정리를 증명하는 과정에서 쓰인다.[1]

관련 항목

각주

  1. Apostol, Tom (1998). 《Introduction to Analytic Number Theory》. Springer. 236쪽. ISBN 978-0-387-90163-3.