파라콤팩트 공간: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
편집 요약 없음
17번째 줄: 17번째 줄:
* 파라콤팩트 공간과 콤팩트 공간의 [[곱공간]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|260}}
* 파라콤팩트 공간과 콤팩트 공간의 [[곱공간]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|260}}
* [[국소 콤팩트]] [[연결 공간|연결]] [[위상군]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|261}}
* [[국소 콤팩트]] [[연결 공간|연결]] [[위상군]]은 파라콤팩트 공간이다.<ref name="Munkres"/>{{rp|261}}
* ('''모리타의 정리''' {{llang|en|Morita’s theorem}}) [[정규 공간|정규]] [[린델뢰프 공간]]은 파라콤팩트 공간이다.<ref name="Morita"/><ref name="Munkres"/>{{rp|257}} 특히, 모든 [[국소 콤팩트]] [[하우스도르프 공간|하우스도르프]] [[제2 가산 공간]]은 파라콤팩트 공간이다.


한편, 일반적으로 파라콤팩트 공간의 임의의 부분공간은 파라콤팩트 공간이 되지 않으므로 파라콤팩트성은 [[유전적 성질]]이 아니다. 또한, [[콤팩트 공간]]들을 모으면 [[티호노프 정리]]에 의해 그 곱공간 역시 [[콤팩트 공간]]이 되는 것과는 다르게, 파라콤팩트 공간의 임의의 [[곱공간]]은 파라콤팩트 공간이 되지 않는다.<ref name="Munkres"/>{{rp|253}}
한편, 일반적으로 파라콤팩트 공간의 임의의 부분공간은 파라콤팩트 공간이 되지 않으므로 파라콤팩트성은 [[유전적 성질]]이 아니다. 또한, [[콤팩트 공간]]들을 모으면 [[티호노프 정리]]에 의해 그 곱공간 역시 [[콤팩트 공간]]이 되는 것과는 다르게, 파라콤팩트 공간의 임의의 [[곱공간]]은 파라콤팩트 공간이 되지 않는다.<ref name="Munkres"/>{{rp|253}}
22번째 줄: 23번째 줄:
=== 하우스도르프 파라콤팩트 공간 ===
=== 하우스도르프 파라콤팩트 공간 ===
파라콤팩트 공간에 [[하우스도르프 공간]]의 조건을 추가하면, 다음과 같이 여러 유용한 성질들이 성립한다.
파라콤팩트 공간에 [[하우스도르프 공간]]의 조건을 추가하면, 다음과 같이 여러 유용한 성질들이 성립한다.
* ('''디외도네의 정리''') 파라콤팩트 [[하우스도르프 공간]]은 [[T4 공간|T<sub>4</sub> 공간]]이다.<ref name="Munkres">{{서적 인용|이름=James R.|성=Munkres|제목=Topology|isbn=978-013181629-9|판=2|출판사=Prentice Hall|날짜=2000|url=http://www.pearsonhighered.com/bookseller/product/Topology/9780131816299.page|zbl=0951.54001|mr=0464128 |언어고리=en}}</ref>{{rp|253}}
* ('''디외도네의 정리''') 파라콤팩트 [[하우스도르프 공간]]은 [[정규 공간]]이다.<ref name="Munkres">{{서적 인용|이름=James R.|성=Munkres|제목=Topology|isbn=978-013181629-9|판=2|출판사=Prentice Hall|날짜=2000|url=http://www.pearsonhighered.com/bookseller/product/Topology/9780131816299.page|zbl=0951.54001|mr=0464128 |언어고리=en}}</ref>{{rp|253}}
* ('''모리타의 정리''') [[T4 공간|T<sub>4</sub>]] [[린델뢰프 공간]]은 파라콤팩트 공간이다.<ref name="Morita"/><ref name="Munkres"/>{{rp|257}}
** 디외도네의 정리와 모리타의 정리의 따름정리 : 하우스도르프 린델뢰프 공간에 대하여, [[정칙 공간]] 조건과 파라콤팩트 조건은 동치이다.
** 디외도네의 정리와 모리타의 정리의 따름정리 : 하우스도르프 린델뢰프 공간에 대하여, [[정칙 공간]] 조건과 파라콤팩트 조건은 동치이다.
* 파라콤팩트 [[하우스도르프 공간]] 위의 임의의 [[열린 덮개]]에 대하여, 이에 종속되는 [[단위 분할]]이 존재한다.
* ('''[[스미르노프 거리화 정리]]''') 파라콤팩트 [[하우스도르프 공간|하우스도르프]] [[국소 거리화 가능 공간]]의 조건은 [[거리화 가능 공간]] 조건과 동치이다.<ref name="Munkres"/>{{rp|261}}
* ('''[[스미르노프 거리화 정리]]''') 파라콤팩트 [[하우스도르프 공간|하우스도르프]] [[국소 거리화 가능 공간]]의 조건은 [[거리화 가능 공간]] 조건과 동치이다.<ref name="Munkres"/>{{rp|261}}
* 위상 공간 X, Y에 대해 X에서 Y로의 [[완전사상]]이 존재한다면, Y가 파라콤팩트일 때 X도 파라콤팩트이고, Y가 파라콤팩트 [[하우스도르프 공간]]일 때 X도 파라콤팩트 [[하우스도르프 공간]]이다.<ref name="Munkres"/>{{rp|260}}
* 위상 공간 X, Y에 대해 X에서 Y로의 [[완전 사상]]({{llang|en|perfect map}})이 존재한다면, Y가 파라콤팩트일 때 X도 파라콤팩트이고, Y가 파라콤팩트 [[하우스도르프 공간]]일 때 X도 파라콤팩트 [[하우스도르프 공간]]이다.<ref name="Munkres"/>{{rp|260}}
* [[T4 공간|T<sub>4</sub> 공간]]의 [[유한 집합|유한 개]] 닫힌 파라콤팩트 부분집합들의 [[합집합]] 역시 파라콤팩트 집합이다.<ref name="Munkres"/>{{rp|260}}
* [[정규 공간|정규]] [[하우스도르프 공간]]의 [[유한 집합|유한 개]] 닫힌 파라콤팩트 부분집합들의 [[합집합]] 역시 파라콤팩트 집합이다.<ref name="Munkres"/>{{rp|260}}
* [[T4 공간|T<sub>4</sub> 공간]] <math>X</math> 속의 [[가산 집합|가산 개]] 닫힌 파라콤팩트 부분집합들의 [[내부 (위상수학)|내부]]가 이루는 [[집합족]]이 X의 [[덮개 (위상수학)|덮개]]를 이룰 때, 그 합집합 역시 파라콤팩트 집합이다.<ref name="Munkres"/>{{rp|260}}
* [[정규 공간|정규]] [[하우스도르프 공간]] <math>X</math> 속의 [[가산 집합|가산 개]] 닫힌 파라콤팩트 부분집합들의 [[내부 (위상수학)|내부]]가 이루는 [[집합족]]이 X의 [[덮개 (위상수학)|덮개]]를 이룰 때, 그 합집합 역시 파라콤팩트 집합이다.<ref name="Munkres"/>{{rp|260}}

== 예 ==
[[긴 직선]]은 [[국소 콤팩트]] [[하우스도르프 공간]]이지만, 파라콤팩트 공간이 아니다.


== 역사 ==
== 역사 ==

2015년 11월 29일 (일) 16:43 판

일반위상수학에서, 파라콤팩트 공간(paracompact空間, 영어: paracompact space)은 위상 공간으로서, 콤팩트 공간을 새로운 방식으로 정의하여 만든 공간이다. 미분위상수학미분기하학 등의 분야에 아주 유용하게 사용된다. 이들 분야에서 다루는 많은 공간들이 파라콤팩트 공간이며, 이 공간은 단위 분할 성질을 가져서 국소적인 성질을 통해 전체적인 성질을 정의할 수 있기 때문에 리만 계량, 미분 형식적분 등 여러 주제에서 유용하기 때문이다.[1]:68

정의

파라콤팩트 공간은 다음과 같이 정의된다.[1]:68

  • 위상 공간 X가 파라콤팩트 공간일 필요충분조건은 X의 모든 열린 덮개가 국소적 유한(locally finite) 열린 세분을 갖는 것이다.

X의 열린 덮개 국소적 유한이라는 것은, x∈X마다 그 근방 가 존재하여 유한 개의 에 대해서만 을 만족한다는 의미이다.[1]:68

성질

파라콤팩트 공간은 다음과 같은 여러 유용한 성질들을 갖는다.

한편, 일반적으로 파라콤팩트 공간의 임의의 부분공간은 파라콤팩트 공간이 되지 않으므로 파라콤팩트성은 유전적 성질이 아니다. 또한, 콤팩트 공간들을 모으면 티호노프 정리에 의해 그 곱공간 역시 콤팩트 공간이 되는 것과는 다르게, 파라콤팩트 공간의 임의의 곱공간은 파라콤팩트 공간이 되지 않는다.[2]:253

하우스도르프 파라콤팩트 공간

파라콤팩트 공간에 하우스도르프 공간의 조건을 추가하면, 다음과 같이 여러 유용한 성질들이 성립한다.

긴 직선국소 콤팩트 하우스도르프 공간이지만, 파라콤팩트 공간이 아니다.

역사

1940년에 존 윌더 튜키(영어: John Wilder Tukey)는 "완전 정규 공간"(영어: fully normal space)이라는 개념을 정의하였다.[4][5]:165 1944년에 프랑스의 수학자 장 디외도네는 파라콤팩트 공간의 개념을 정의하였다.[6][5]:165 1948년에 아서 해럴드 스톤(영어: Arthur Harold Stone)은 완전 정규 공간의 개념과 파라콤팩트 공간의 개념이 서로 동치임을 증명하였다.[7][5]:165

모리타의 정리는 모리타 기이치(틀:Ja-y)가 1948년에 증명하였다.[3][5]:165

참고 문헌

  1. 조용승 (2010). 《위상수학》. 경문사. 
  2. Munkres, James R. (2000). 《Topology》 2판. Prentice Hall. ISBN 978-013181629-9. MR 0464128. Zbl 0951.54001. 
  3. Morita, Kiiti (1948). “Star-finite coverings and the star-finite property”. 《Mathematica Japonicae》 1: 60-68. Zbl 0041.09704. 
  4. Tukey, John W. (1940). “Convergence and Uniformity in Topology”. Annals of Mathematics Studies 2. Princeton University Press. MR 0002515. 
  5. Steen, Lynn Arthur; Seebach, J. Arthur, Jr. (1978). 《Counterexamples in topology》 2판. Springer. doi:10.1007/978-1-4612-6290-9. ISBN 978-0-387-90312-5. MR 507446. Zbl 0386.54001. 
  6. Dieudonné, Jean (1944). “Une généralisation des espaces compacts”. 《Journal de mathématiques pures et appliquées (neuvième série)》 23: 65–76. ISSN 0021-7824. MR 0013297. 
  7. Stone, A. H. (1948년 10월). “Paracompactness and product spaces” 54 (10). doi:10.1090/S0002-9904-1948-09118-2. ISSN 0273-0979. MR 0026802. Zbl 0032.31403. 

바깥 고리