모듈러 곡선: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
새 문서: 수론대수기하학에서, '''모듈러 곡선'''(modular曲線, {{llang|en|modular curve}})은 상반평면모듈러 군의 부분군에 대한 [[몫공간]...
 
2번째 줄: 2번째 줄:


== 정의 ==
== 정의 ==
[[모듈러 군]] <math>\operatorname{SL}(2;\mathbb Z)\cong\Gamma(1)</math>의 부분군 <math>G\subset\Gamma(1)</math>가 주어졌다고 하자. 만약 충분히 큰 <math>N</math>에 대하여 <math>\Gamma(N)\supset G</math>라면, <math>G</math>를 모듈러 군의 '''합동 부분군'''({{llang|en|congruence subgroup}})이라고 하고, 이러한 가장 작은 정수 <math>N</math>을 합동 부분군 <math>G</math>의 '''준위'''({{llang|en|level|레벨}})라고 한다.
[[모듈러 군]] <math>\operatorname{SL}(2;\mathbb Z)\cong\Gamma(1)</math>의 부분군 <math>G\subset\Gamma(1)</math>가 주어졌다고 하자. 만약 충분히 큰 <math>N</math>에 대하여 <math>\Gamma(N)\supset G</math>라면, <math>G</math>를 모듈러 군의 '''합동 부분군'''(合同部分群, {{llang|en|congruence subgroup}})이라고 하고, 이러한 가장 작은 정수 <math>N</math>을 합동 부분군 <math>G</math>의 '''준위'''({{llang|en|level|레벨}})라고 한다.


&Gamma(1)은 저연스럽게 [[상반평면]] <math>\mathbb H=\{z\in\mathbb C\colon\operatorname{Im}z>0\}</math>에 작용한다. 이를 제약하여, 합동 부분군 <math>G</math> 또한 상반평면에 작용하게 된다. 이렇게 정의한 몫공간 <math>G\setminus\mathbb H</math>를 (비콤팩트) '''모듈러 곡선''' <math>Y(G)</math>라고 한다. 이는 일반적으로 [[콤팩트 공간|콤팩트]]하지 않은 [[리만 곡면]]이다.
&Gamma;(1)은 저연스럽게 [[상반평면]] <math>\mathbb H=\{z\in\mathbb C\colon\operatorname{Im}z>0\}</math>에 작용한다. 이를 제약하여, 합동 부분군 <math>G</math> 또한 상반평면에 작용하게 된다. 이렇게 정의한 몫공간 <math>G\setminus\mathbb H</math>를 (비콤팩트) '''모듈러 곡선''' <math>Y(G)</math>라고 한다. 이는 일반적으로 [[콤팩트 공간|콤팩트]]하지 않은 [[리만 곡면]]이다.


콤팩트한 모듈러 곡선을 얻기 위해서는 '''확장 상반평면'''({{llang|en|extended upper-half plane}})
콤팩트한 모듈러 곡선을 얻기 위해서는 '''확장 상반평면'''({{llang|en|extended upper-half plane}})

2013년 12월 19일 (목) 08:33 판

수론대수기하학에서, 모듈러 곡선(modular曲線, 영어: modular curve)은 상반평면모듈러 군의 부분군에 대한 몫공간리만 곡면이다. 타원곡선모듈러 군의 이론과 밀접한 관계를 갖는다.

정의

모듈러 군 의 부분군 가 주어졌다고 하자. 만약 충분히 큰 에 대하여 라면, 를 모듈러 군의 합동 부분군(合同部分群, 영어: congruence subgroup)이라고 하고, 이러한 가장 작은 정수 을 합동 부분군 준위(영어: level 레벨[*])라고 한다.

Γ(1)은 저연스럽게 상반평면 에 작용한다. 이를 제약하여, 합동 부분군 또한 상반평면에 작용하게 된다. 이렇게 정의한 몫공간 를 (비콤팩트) 모듈러 곡선 라고 한다. 이는 일반적으로 콤팩트하지 않은 리만 곡면이다.

콤팩트한 모듈러 곡선을 얻기 위해서는 확장 상반평면(영어: extended upper-half plane)

을 정의하자. 그렇다면 콤팩트 모듈러 곡선 구문 분석 실패 (SVG를 사용하되 미지원 시 PNG 사용 (브라우저 플러그인을 통해 MathML 활성화 가능): "http://localhost:6011/ko.wikipedia.org/v1/" 서버에서 잘못된 응답 ('Math extension cannot connect to Restbase.'):): {\displaystyle X(G)=G\setminus\mathbb H^*} 이라고 한다.

대표적인 합동 부분군 &Gamma0(N), &Gamma1(N) 및 Γ(N)에 대응하는 콤팩트 모듈러 곡선을 각각 X0(N), X1(N), X(N)이라고 적는다.

성질

모듈러 곡선의 기하는 잘 알려져 있다. 예를 들어, 는 경우 j-불변량에 의하여 그 리만 곡면은 리만 구면동형이다.

일반적으로, 의 종수(genus)는 다음과 같다.

여기서

  • 부분군의 지표다.
  • 의 타원점(elliptic point)들 가운데, 계수(order)가 2인 타원점들의 수이다.
  • 는 계수가 3인 타원점들의 수이다.
  • 의 첨점들의 수이다.

예를 들어, 의 경우,

  • 계수가 2인 타원점 1개 ()
  • 계수가 3인 타원점 1개 ()
  • 첨점 1개 ()

를 가진다. 따라서

이다.

Γ0(N)의 경우, 타원점과 첨점들의 수는 다음과 같다.

여기서 오일러 함수이고, 르장드르 기호이다. 의 인수라는 뜻이다. 소인수라는 뜻이다.

참고 문헌