글루카곤: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
편집 요약 없음
112.173.221.25(토론)의 11492514판 편집을 되돌림 (미번역)
1번째 줄: 1번째 줄:
'''글루카곤'''(Glucagon)은 [[이자 (해부학)|이자]]에서 발생하는 혈당량을 증가시키는 [[호르몬]]이다.
{{PBB|geneid=2641}}
'''Glucagon'''은 [[이자]]에서 분비되는 펩타이드 [[호르몬]]으로, 혈당을 높인다. 이는 혈당을 낮추는 [[인슐린]]에 반대 작용에 해당한다. 이자는 [[혈당]] (포도당) 수준이 지나치게 낮으면 글루카곤을 방출한다. 글루카곤은 [[간]]으로 하여금 저장된 [[글리코겐]]을 [[포도당]]으로 변환하게 하여, 혈류로 방출하게 한다. 높은 혈당 수준은 인슐린 방출을 자극한다. 인슐린은 인슐린 의존 조직들이 포도당을 가져가 사용하도록 한다. 그러므로 글루카곤과 인슐린은 혈당 조절 피드백 시스템의 일부이다. 글루카곤은 glucagon hormone family에 속한다.


체내의 [[혈당]]의 양이 기준치 이하로 내려갈 경우 이자에서 글루카곤을 분비, 간에서 [[글리코젠]]을 포도당으로 분해해 혈당량을 증가시키는 작용을 한다.
==생리==


{{토막글|생화학}}
===생산===
이자의 내분비 부분의 랑게르한스 섬(islets of Langerhans)의 알파 세포(alpha cell)들에 의해 합성되고 분비된다. 설치류에서 알파 세포들은 섬(islet)의 바깥 가장자리(rim)에 위치한다. 사람에서 섬의 구조는 덜 분리되어 있어서, 알파 세포들이 섬 전체에 분포한다.


[[분류:호르몬]]
===조절===
[[분류:물질대사]]
글루카곤 분비를 '''자극하는''' 것들:
[[분류:펩타이드 호르몬]]
* [[저혈당]]
* [[에피네프린]] (via β2, α2,<ref name="Layden_2010">{{cite journal | author = Layden BT, Durai V, Lowe WL | title = G-Protein-Coupled Receptors, Pancreatic Islets, and Diabetes | journal = Nature Education | volume = 3 | issue = 9 | pages = 13 | year = 2010 | url = http://www.nature.com/scitable/topicpage/g-protein-coupled-receptors-pancreatic-islets-and-14257267 }}</ref> and α1<ref name=alpha1and2>{{cite journal | author = Skoglund G, Lundquist I, Ahrén B | title = Alpha 1- and alpha 2-adrenoceptor activation increases plasma glucagon levels in the mouse | journal = Eur. J. Pharmacol. | volume = 143 | issue = 1 | pages = 83–8 | year = 1987 | month = November | pmid = 2891547 | doi = 10.1016/0014-2999(87)90737-0 }}</ref> adrenergic receptors)
* [[아르기닌]]
* [[알라닌]] (often from muscle-derived pyruvate/glutamate transamination (see [[alanine transaminase]] reaction).
* [[아세틸콜린]]<ref name="HoneyWEIRf1980">{{cite journal | author = Honey RN, Weir GC | title = Acetylcholine stimulates insulin, glucagon, and somatostatin release in the perfused chicken pancreas | journal = Endocrinology | volume = 107 | issue = 4 | pages = 1065–8 | year = 1980 | month = October | pmid = 6105951 | doi = 10.1210/endo-107-4-1065 }}</ref>
* [[콜레시스토키닌]]

글루카곤 분비를 '''억제하는''' 것들:
* [[소마토스타틴]]
* [[인슐린]] ([[GABA]]를 통해)<ref name="pmid16399504">{{cite journal | author = Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q | title = Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system | journal = Cell Metab. | volume = 3 | issue = 1 | pages = 47–58 | year = 2006 | month = January | pmid = 16399504 | doi = 10.1016/j.cmet.2005.11.015 }}</ref>
* 혈중 유리 [[지방산]] 및 keto acids의 증가
* [[요소]] 생산의 증가

===기능===
[[Image:Glucagon rednblue.png|thumb|left|A microscopic image stained for glucagon]]
글루카곤은 일반적으로 [[포도당신생합성]]과 [[glycogenolysis]]를 통해 혈액 내 [[포도당]]의 양을 높인다.
{{drugbox
| Verifiedfields = changed
| verifiedrevid = 461121086
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 76LA80IG2G
| name =
| IUPAC_name =
| image = Glucagon.png|thumb|right|Glucagon ball and stick model, with the [[carboxyl]] terminus above and the [[amino]] terminus below]
| alt =
| caption =
| tradename =
| Drugs.com =
| MedlinePlus =
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 10481928
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C153H225N43O49S/c1-72(2)52-97(133(226)176-96(47-51-246-11)132(225)184-104(60-115(159)209)143(236)196-123(78(10)203)151(244)245)179-137(230)103(58-83-64-167-89-29-19-18-28-87(83)89)183-131(224)95(43-46-114(158)208)177-148(241)120(74(5)6)194-141(234)101(54-79-24-14-12-15-25-79)182-138(231)105(61-117(211)212)185-130(223)94(42-45-113(157)207)171-124(217)75(7)170-127(220)91(31-22-49-165-152(160)161)172-128(221)92(32-23-50-166-153(162)163)174-146(239)110(69-199)191-140(233)107(63-119(215)216)186-134(227)98(53-73(3)4)178-135(228)99(56-81-33-37-85(204)38-34-81)180-129(222)90(30-20-21-48-154)173-145(238)109(68-198)190-136(229)100(57-82-35-39-86(205)40-36-82)181-139(232)106(62-118(213)214)187-147(240)111(70-200)192-150(243)122(77(9)202)195-142(235)102(55-80-26-16-13-17-27-80)188-149(242)121(76(8)201)193-116(210)66-168-126(219)93(41-44-112(156)206)175-144(237)108(67-197)189-125(218)88(155)59-84-65-164-71-169-84/h12-19,24-29,33-40,64-65,71-78,88,90-111,120-123,167,197-205H,20-23,30-32,41-63,66-70,154-155H2,1-11H3,(H2,156,206)(H2,157,207)(H2,158,208)(H2,159,209)(H,164,169)(H,168,219)(H,170,220)(H,171,217)(H,172,221)(H,173,238)(H,174,239)(H,175,237)(H,176,226)(H,177,241)(H,178,228)(H,179,230)(H,180,222)(H,181,232)(H,182,231)(H,183,224)(H,184,225)(H,185,223)(H,186,227)(H,187,240)(H,188,242)(H,189,218)(H,190,229)(H,191,233)(H,192,243)(H,193,210)(H,194,234)(H,195,235)(H,196,236)(H,211,212)(H,213,214)(H,215,216)(H,244,245)(H4,160,161,165)(H4,162,163,166)/t75-,76+,77+,78?,88-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,120-,121-,122-,123-/m0/s1
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = MASNOZXLGMXCHN-GVLKBUBXSA-N
| InChI = 1S/C153H225N43O49S/c1-72(2)52-97(133(226)176-96(47-51-246-11)132(225)184-104(60-115(159)209)143(236)196-123(78(10)203)151(244)245)179-137(230)103(58-83-64-167-89-29-19-18-28-87(83)89)183-131(224)95(43-46-114(158)208)177-148(241)120(74(5)6)194-141(234)101(54-79-24-14-12-15-25-79)182-138(231)105(61-117(211)212)185-130(223)94(42-45-113(157)207)171-124(217)75(7)170-127(220)91(31-22-49-165-152(160)161)172-128(221)92(32-23-50-166-153(162)163)174-146(239)110(69-199)191-140(233)107(63-119(215)216)186-134(227)98(53-73(3)4)178-135(228)99(56-81-33-37-85(204)38-34-81)180-129(222)90(30-20-21-48-154)173-145(238)109(68-198)190-136(229)100(57-82-35-39-86(205)40-36-82)181-139(232)106(62-118(213)214)187-147(240)111(70-200)192-150(243)122(77(9)202)195-142(235)102(55-80-26-16-13-17-27-80)188-149(242)121(76(8)201)193-116(210)66-168-126(219)93(41-44-112(156)206)175-144(237)108(67-197)189-125(218)88(155)59-84-65-164-71-169-84/h12-19,24-29,33-40,64-65,71-78,88,90-111,120-123,167,197-205H,20-23,30-32,41-63,66-70,154-155H2,1-11H3,(H2,156,206)(H2,157,207)(H2,158,208)(H2,159,209)(H,164,169)(H,168,219)(H,170,220)(H,171,217)(H,172,221)(H,173,238)(H,174,239)(H,175,237)(H,176,226)(H,177,241)(H,178,228)(H,179,230)(H,180,222)(H,181,232)(H,182,231)(H,183,224)(H,184,225)(H,185,223)(H,186,227)(H,187,240)(H,188,242)(H,189,218)(H,190,229)(H,191,233)(H,192,243)(H,193,210)(H,194,234)(H,195,235)(H,196,236)(H,211,212)(H,213,214)(H,215,216)(H,244,245)(H4,160,161,165)(H4,162,163,166)/t75-,76+,77+,78?,88-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,120-,121-,122-,123-/m0/s1
| InChIKey = MASNOZXLGMXCHN-GVLKBUBXSA-N
| CAS_number_Ref = {{cascite|correct|??}}
| CAS_number =
| ATCvet =
| ATC_prefix = <!-- 'none' if uncategorised -->
| ATC_suffix =
| PubChem = 16186314
| IUPHAR_ligand = 1136
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank =
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 266481
| chemical_formula =
| molecular_weight =
| bioavailability =
| protein_bound =
| metabolism =
| elimination_half-life =
| excretion =
| pregnancy_AU = <!-- A / B1 / B2 / B3 / C / D / X -->
| pregnancy_US = <!-- A / B / C / D / X -->
| pregnancy_category=
| legal_AU = <!-- S2, S3, S4, S5, S6, S7, S8, S9 or Unscheduled-->
| legal_CA = <!-- OTC, Rx-only, Schedule I, II, III, IV, V, VI, VII, VIII -->
| legal_UK = <!-- GSL, P, POM, CD, CD Lic, CD POM, CD No Reg POM, CD (Benz) POM, CD (Anab) POM or CD Inv POM -->
| legal_US = <!-- OTC / Rx-only / Schedule I, II, III, IV, V -->
| legal_status =
| routes_of_administration =
}}

포도당은 간 속에 글리코겐의 형태로 저장되어 있는데, 이는 녹말과 비슷한 포도당 중합체 사슬이다. 간 세포(hepatocytes)들은 글루카곤 수용체(glucagon receptor)들을 가진다. 글루카곤이 이들 글루카곤 수용체에 결합하면 간 세포들은 글리코겐 중합체를 개별 포도당 분자로 변환하고, 혈류에 방출한다. 이것이 glycogenolysis라는 과정이다. 이 저장량(=글리코겐)이 고갈되면, 글루카곤은 간과 신장으로 하여금 추가로 포도당을 합성하도록 유도한다. [[포도당신생합성]]. 글루카곤은 간의 해당과정(glycolysis)을 차단하고, 글리코겐 분해 산물(glycolytic intermediates)이 포도당신생합성에 사용되도록 한다.

글루카곤은 또한 lipolysis를 통해 포도당 생성 속도를 조절한다. 글루카곤은 사람에서 미미한 lipolysis 효과가 있다.

Glucagon production appears to be dependent on the central nervous system through pathways yet to be defined. In invertebrate animals, [[eyestalk]] removal has been reported to affect glucagon production. Excising the eyestalk in young crayfish produces glucagon-induced hyperglycemia.<ref name="Leinen_1983">{{cite journal | author = Leinen RL, Giannini AJ | title = Effect of eyestalk removal on glucagon induced hyperglycemia in crayfish | journal = Society for Neuroscience Abstracts | year = 1983 | volume = 9 | pages = 604 }}</ref>

===작용 기전===
Glucagon binds to the [[glucagon receptor]], a [[G protein-coupled receptor]], located in the [[plasma membrane]]. The conformation change in the receptor activates [[G protein]]s, a heterotrimeric protein with α, β, and γ subunits. When the G protein interacts with the receptor, it undergoes a conformational change that results in the replacement of the [[guanosine diphosphate|GDP]] molecule that was bound to the α subunit with a [[guanosine triphosphate|GTP]] molecule. This substitution results in the releasing of the α subunit from the β and γ subunits. The alpha subunit specifically activates the next enzyme in the cascade, [[adenylate cyclase]].

Adenylate cyclase manufactures [[cyclic adenosine monophosphate]] (cyclic AMP or cAMP), which activates [[protein kinase A]] (cAMP-dependent protein kinase). This enzyme, in turn, activates [[phosphorylase kinase]], which, in turn, phosphorylates [[glycogen phosphorylase]], converting into the active form called phosphorylase A. Phosphorylase A is the enzyme responsible for the release of [[glucose-1-phosphate]] from glycogen polymers.

== 역사 ==
In the 1920s, Kimball and Murlin studied [[pancreas|pancreatic]] extracts, and found an additional substance with [[hyperglycemia|hyperglycemic]] properties. They described glucagon in 1923.<ref name="Kimball_1923">{{cite journal | author = Kimball C, Murlin J | title = Aqueous extracts of pancreas III. Some precipitation reactions of insulin | journal = J. Biol. Chem. | year = 1923 | volume = 58 | pages = 337–348 | url = http://www.jbc.org/cgi/reprint/58/1/337 | issue=1}}</ref> The amino acid sequence of glucagon was described in the late 1950s.<ref name="Bromer_1957">{{cite journal | author = Bromer W, Winn L, Behrens O | title = The amino acid sequence of glucagon V. Location of amide groups, acid degradation studies and summary of sequential evidence | journal = J. Am. Chem. Soc. | year = 1957 | volume = 79 | issue = 11 | pages = 2807–2810|doi=10.1021/ja01568a038 }}</ref> A more complete understanding of its role in physiology and disease was not established until the 1970s, when a specific [[radioimmunoassay]] was developed.

===어원===
Glucagon was named in 1923, probably from the [[Greek (language)|Greek]] ''[[wikt:γλυκός|γλυκός]]'' ''sweet'', and ''[[wikt:ἄγειν|ἄγειν]]'' ''to lead''.<ref>[http://dictionary.reference.com/browse/glucagon glucagon] on [[dictionary.com]]</ref>

==구조==
Glucagon is a 29-[[amino acid]] [[polypeptide]]. Its [[primary structure]] in humans is: [[amine|NH<sub>2</sub>]]-[[Histidine|His]]-[[Serine|Ser]]-[[Glutamine|Gln]]-[[Glycine|Gly]]-[[Threonine|Thr]]-[[Phenylalanine|Phe]]-[[Threonine|Thr]]-[[Serine|Ser]]-[[Aspartic acid|Asp]]-[[Tyrosine|Tyr]]-[[Serine|Ser]]-[[Lysine|Lys]]-[[Tyrosine|Tyr]]-[[Leucine|Leu]]-[[Aspartic acid|Asp]]-[[Serine|Ser]]-[[Arginine|Arg]]-[[Arginine|Arg]]-[[Alanine|Ala]]-[[Glutamine|Gln]]-[[Aspartic acid|Asp]]-[[Phenylalanine|Phe]]-[[Valine|Val]]-[[Glutamine|Gln]]-[[Tryptophan|Trp]]-[[Leucine|Leu]]-[[Methionine|Met]]-[[Asparagine|Asn]]-[[Threonine|Thr]]-[[carboxyl group|COOH]].

The polypeptide has a [[molecular weight]] of 3485 [[Atomic mass unit|dalton]]s. Glucagon is a [[peptide]] (non[[steroid]]) hormone.

Glucagon is generated from the cleavage of [[proglucagon]] secreted by pancreatic islet α cells. In intestinal L cells, [[proglucagon]] is cleaved to the alternate products [[glicentin]], [[GLP-1]] (an [[incretin]]), [[Intervening peptide 2|IP-2]], and [[GLP-2]] (promotes intestinal growth).

==병리==
비정상적으로 높아진 글루카곤 수치는 glucagonoma 같은 이자의 [[종양]]에 의해 생길 수 있는데, 증상은 [[necrolytic migratory erythema]], 아미노산 감소, [[고혈당]] 등이다. 단독으로 또는 [[multiple endocrine neoplasia type 1]]의 일부로서 발생할 수 있다.

==이용, 금기==

===저혈당===
An injectable form of glucagon is vital first aid in cases of severe hypoglycemia when the victim is unconscious or for other reasons cannot take glucose orally. The dose for an adult is typically 1 milligram, and the glucagon is given by intramuscular, intravenous or subcutaneous injection, and quickly raises [[blood glucose]] levels. Glucagon can also be administered intravenously at 0.25 - 0.5 unit. To use the injectable form, it must be reconstituted prior to use, a step that requires a sterile diluent to be injected into a vial containing powdered glucagon, because the hormone is highly unstable when dissolved in solution. When dissolved in a fluid state, glucagon can form amyloid fibrils, or tightly woven chains of proteins made up of the individual glucagon peptides, and once glucagon begins to fibrilize, it becomes useless when injected, as the glucagon cannot be absorbed and used by the body. The reconstitution process makes using glucagon cumbersome, although there are a number of products now in development from a number of companies that aim to make the product easier to use.

===베타 차단제 과용===
Anecdotal evidence suggests a benefit of higher doses of glucagon in the treatment of overdose with [[beta blocker]]s; the likely mechanism of action is the increase of cAMP in the [[myocardium]], in effect bypassing the [[Adrenergic receptor|β-adrenergic]] [[second messenger system]].<ref name="pmid10234590">{{cite journal | author = White CM | title = A review of potential cardiovascular uses of intravenous glucagon administration | journal = J Clin Pharmacol | volume = 39 | issue = 5 | pages = 442–7 | year = 1999 | month = May | pmid = 10234590 | doi = | url = }}</ref>

=== 음식 덩어리가 낀 경우 (impacted food bolus) ===
Glucagon relaxes the [[lower esophageal sphincter]] and is used in emergencies involving an impacted food bolus in the esophagus.<ref name="pmid18925301">{{cite journal |author=Ko HH, Enns R |title=Review of food bolus management |journal=Can. J. Gastroenterol. |volume=22 |issue=10 |pages=805–8 |year=2008 |month=October |pmid=18925301 |pmc=2661297}}</ref>

===부작용과 상호작용===
글루카곤의 작용은 매우 빠르다; 흔한 부작용에는 두통과 구역이 있다.

약물 상호작용: 글루카곤은 경구 항응고제와 상호작용하여 출혈 경향을 증가시킨다.

===금기===
글루카곤이 다양한 형태의 저혈당을 치료하는 데 쓰일 수 있지만 [[크롬친화세포종]] 환자에서는 매우 금기이다, as the drug interaction with elevated levels of [[adrenaline]] produced by the tumor may produce an exponential increase in blood sugar levels, leading to a hyperglycemic state, which may incur a fatal elevation in blood pressure.<ref name="urlpi.lilly.com">{{cite web | url = http://pi.lilly.com/us/rglucagon-pi.pdf | title = Information for the Physician: Glucagon for Injection (rDNA origin) | date = | format = | work = | publisher = Eli Lilly and Company | accessdate = 2011-11-19 }}</ref> Likewise, glucagon is contraindicated in patients with an [[insulinoma]], as its use may lead to rebound [[hypoglycemic|hypoglycemia]].<ref name="urlpi.lilly.com"/>

==Media==
[[Image:Glucagon stereo animation.gif|thumb|center|Rotating [[stereogram]] animation of glucagon (1.70 [[Megabyte|MB]], [[animated GIF]] format)]]

==See also==
* [[Cortisol]]
* [[Diabetes mellitus]]
* [[Glucagon-like peptide-1]]
* [[Glucagon-like peptide-2]]
* [[Insulin]]
* [[Islets of Langerhans]]
* [[Pancreas]]
* [[Proglucagon]]

==References==
{{Reflist|35em}}

==Further reading==
{{refbegin|35em}}
*{{cite journal | author=Kieffer TJ, Habener JF |title=The glucagon-like peptides |journal=Endocr. Rev. |volume=20 |issue= 6 |pages= 876–913 |year= 2000 |pmid= 10605628 |doi=10.1210/er.20.6.876 }}
*{{cite journal | author=Drucker DJ |title=Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis |journal=Mol. Endocrinol. |volume=17 |issue= 2 |pages= 161–71 |year= 2003 |pmid= 12554744| doi=10.1210/me.2002-0306}}
*{{cite journal | author=Jeppesen PB |title=Clinical significance of GLP-2 in short-bowel syndrome |journal=J. Nutr. |volume=133 |issue= 11 |pages= 3721–4 |year= 2004 |pmid= 14608103 |doi= }}
*{{cite journal | author=Brubaker PL, Anini Y |title=Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2 |journal=Can. J. Physiol. Pharmacol. |volume=81 |issue= 11 |pages= 1005–12 |year= 2004 |pmid= 14719035 |doi= 10.1139/y03-107 }}
*{{cite journal | author=Baggio LL, Drucker DJ |title=Clinical endocrinology and metabolism. Glucagon-like peptide-1 and glucagon-like peptide-2 |journal=Best Pract. Res. Clin. Endocrinol. Metab. |volume=18 |issue= 4 |pages= 531–54 |year= 2005 |pmid= 15533774 |doi= 10.1016/j.beem.2004.08.001 }}
*{{cite journal | author=Holz GG, Chepurny OG |title=Diabetes Outfoxed by GLP-1? |journal=Sci. STKE |volume=2005 |issue= 268 |pages= pe2 |year= 2006 |pmid= 15671479 | pmc=2909599 |doi= 10.1126/stke.2682005pe2 }}
*{{cite journal | author=Dunning BE, Foley JE, Ahrén B |title=Alpha cell function in health and disease: influence of glucagon-like peptide-1 |journal=Diabetologia |volume=48 |issue= 9 |pages= 1700–13 |year= 2006 |pmid= 16132964 |doi= 10.1007/s00125-005-1878-0 }}
*{{cite journal | author=Gautier JF, Fetita S, Sobngwi E, Salaün-Martin C |title=Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes |journal=Diabetes Metab. |volume=31 |issue= 3 Pt 1 |pages= 233–42 |year= 2005 |pmid= 16142014| doi=10.1016/S1262-3636(07)70190-8}}
*{{cite journal | author=De León DD, Crutchlow MF, Ham JY, Stoffers DA |title=Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus |journal=Int. J. Biochem. Cell Biol. |volume=38 |issue= 5–6 |pages= 845–59 |year= 2006 |pmid= 16202636 |doi= 10.1016/j.biocel.2005.07.011 }}
*{{cite journal | author=Beglinger C, Degen L |title=Gastrointestinal satiety signals in humans--physiologic roles for GLP-1 and PYY? |journal=Physiol. Behav. |volume=89 |issue= 4 |pages= 460–4 |year= 2007 |pmid= 16828127 |doi= 10.1016/j.physbeh.2006.05.048 }}
*{{cite journal | author=Stephens JW, Bain SC |title=Safety and adverse effects associated with GLP-1 analogues |journal=Expert opinion on drug safety |volume=6 |issue= 4 |pages= 417–22 |year= 2007 |pmid= 17688385 |doi= 10.1517/14740338.6.4.417 }}
*{{cite journal | author=Orskov C |title=Complete sequences of glucagon-like peptide-1 from human and pig small intestine |journal=J. Biol. Chem. |volume=264 |issue= 22 |pages= 12826–9 |year= 1989 |pmid= 2753890 |doi= | author-separator=, | author2=Bersani M | author3=Johnsen AH | display-authors=3 | last4=Højrup | first4=P | last5=Holst | first5=JJ }}
*{{cite journal | author=Drucker DJ, Asa S |title=Glucagon gene expression in vertebrate brain |journal=J. Biol. Chem. |volume=263 |issue= 27 |pages= 13475–8 |year= 1988 |pmid= 2901414 |doi= }}
*{{cite journal | author=Novak U, Wilks A, Buell G, McEwen S |title=Identical mRNA for preproglucagon in pancreas and gut |journal=Eur. J. Biochem. |volume=164 |issue= 3 |pages= 553–8 |year= 1987 |pmid= 3569278| doi=10.1111/j.1432-1033.1987.tb11162.x}}
*{{cite journal | author=White JW, Saunders GF |title=Structure of the human glucagon gene |journal=Nucleic Acids Res. |volume=14 |issue= 12 |pages= 4719–30 |year= 1986 |pmid= 3725587| doi=10.1093/nar/14.12.4719 | pmc=311486}}
*{{cite journal | author=Schroeder WT, Lopez LC, Harper ME, Saunders GF |title=Localization of the human glucagon gene (GCG) to chromosome segment 2q36----37 |journal=Cytogenet. Cell Genet. |volume=38 |issue= 1 |pages= 76–9 |year= 1984 |pmid= 6546710 |doi=10.1159/000132034 }}
*{{cite journal | author=Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC |title=Exon duplication and divergence in the human preproglucagon gene |journal=Nature |volume=304 |issue= 5924 |pages= 368–71 |year= 1983 |pmid= 6877358| doi=10.1038/304368a0}}
*{{cite journal | author=Kärgel HJ |title=Action of rat liver cathepsin L on glucagon |journal=Acta Biol. Med. Ger. |volume=40 |issue= 9 |pages= 1139–43 |year= 1982 |pmid= 7340337 |doi= | author-separator=, | author2=Dettmer R | author3=Etzold G | display-authors=3 | last4=Kirschke | first4=H | last5=Bohley | first5=P | last6=Langner | first6=J }}
*{{cite journal | author=Wayman GA |title=Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo |journal=J. Biol. Chem. |volume=269 |issue= 41 |pages= 25400–5 |year= 1994 |pmid= 7929237 |doi= | author-separator=, | author2=Impey S | author3=Wu Z | display-authors=3 | last4=Kindsvogel | first4=W | last5=Prichard | first5=L | last6=Storm | first6=DR }}
*{{cite journal | author=Unson CG, Macdonald D, Merrifield RB |title=The role of histidine-1 in glucagon action |journal=Arch. Biochem. Biophys. |volume=300 |issue= 2 |pages= 747–50 |year= 1993 |pmid= 8382034 |doi= 10.1006/abbi.1993.1103 }}
{{refend}}

{{PDB Gallery|geneid=2641}}
{{Hormones}}
{{Proglucagon}}

[[Category:Eli Lilly and Company]]
[[Category:Peptide hormones]]
[[Category:Pancreatic hormones]]
[[Category:Hepatology]]
[[Category:Metabolism]]
[[Category:Human hormones]]
[[Category:Hormones of glucose metabolism]]

2013년 11월 23일 (토) 21:56 판

글루카곤(Glucagon)은 이자에서 발생하는 혈당량을 증가시키는 호르몬이다.

체내의 혈당의 양이 기준치 이하로 내려갈 경우 이자에서 글루카곤을 분비, 간에서 글리코젠을 포도당으로 분해해 혈당량을 증가시키는 작용을 한다.