콘웨이 다면체 표기법

위키백과, 우리 모두의 백과사전.

콘웨이 다면체 표기법존 호턴 콘웨이가 개발한 다면체의 표기법이다.

이 예제 차트는 3개의 연산을 사용하여 큐브에서 11개의 새 양식을 파생하는 방법을 보여 줍니다. 새로운 다면체는 큐브 표면에 지도로 표시되므로 위상 변화가 더 뚜렷합니다. 정점은 원으로 모든 형태로 표시됩니다.

기하학에서, 존 호튼 콘웨이가 발명하고 조지 W. 하트가 장려한 콘웨이 다면체 표기법은 다양한 접두사 연산에 의해 수정된 씨앗 다면체에 기초한 다면체를 묘사하기 위해 사용된다.

콘웨이와 하트는 케플러가 정의한 절단 연산자를 사용하여 동일한 대칭의 관련 다면체를 만드는 아이디어를 확장했습니다. 예를 들어 tC는 잘린 큐브를 나타내고 taC는 다음과 같이 구문 분석합니다.

스타일 T(aC)를 표시합니다.}, 는 (위상적으로) 깎은 정육면체입니다. 가장 간단한 연산자 이중 꼭지점과 면 요소를 바꿉니다. 예를 들어, 이중 큐브는 8면체입니다. dC=O. 이러한 연산자는 직렬로 적용되어 많은 고차 다면체가 생성될 수 있습니다. Hart가 r과 p를 더하는 동안 Conway는 연산자 abdegjkmost를 정의했습니다. 이후 구현에서는 추가 연산자를 명명하며, 이를 "확장" 연산자라고도 합니다. 콘웨이의 기본 연산은 플라톤의 다면체에서 아르키메데스 다면체와 카탈루냐 다면체를 생성하기에 충분합니다. 예를 들어, 두 번 적용되는 앰보는 확장 연산인 aa = e인 반면, 앰보 후 잘라내면 베벨(ta = b)이 생성됩니다.

다면체는 그들의 꼭짓점, 모서리, 면이 어떻게 서로 연결되는지를 위상적으로 연구하거나 공간에서의 요소 배치의 관점에서 기하학적으로 연구할 수 있습니다. 이러한 연산자의 다른 구현은 기하학적으로 다르지만 위상적으로 동일한 다면체를 생성할 수 있습니다. 이러한 위상적으로 동등한 다면체는 구에 다면체 그래프를 많이 내장하는 것으로 생각할 수 있습니다. 달리 명시되지 않은 한, 본 문서(및 Conway 연산자에 대한 일반적인 문헌)에서는 토폴로지가 주요 관심사입니다. 속이 0인 다면체는 모호함을 피하기 위해 종종 정식 형태로 놓입니다.

엄정한 활동[편집]

시드(S), 니들(n), zip(z)은 엄밀히 말하면 존 호턴 콘웨이에서 포함하지 않았지만, 원래 존 호턴 콘웨이 작업과 이중성으로 관련되어 있으므로 여기에 포함됩니다.

지금부터, 큐브 표면에 그려진 큐브 씨에 대한 작업이 시각화됩니다. 파란색 면은 씨앗의 가장자리를 가로지르고 분홍색 면은 씨앗의 꼭짓점 위에 놓여 있습니다. 특히 키랄 연산자의 경우 정점을 정확하게 배치할 때 유연성이 있습니다.

에지벡터 Matrix x xd dx dxd 적용
1 Conway C.pngSeed: S Conway dC.pngDual: d Conway C.pngSeed: dd = S 이중은 각 면을 정점으로, 각 정점을 면으로 바꿉니다.
2 Conway jC.pngJoin: j Conway aC.pngAmbo: a 결합은 사각형 면을 작성합니다. 앰보는 4도 정점을 만들고, 그래프 이론에서 정류 또는 중간 그래프라고도 불립니다.
3 Conway kC.pngKis: k Conway kdC.pngNeedle: n Conway dkC.pngZip: z Conway tC.pngTruncate: t 키스는 각 면에 피라미드를 올리고, 아키케이션, 클리토프, 누적, 강착 또는 피라미드 증축이라고도 불립니다. 정점에서 다면체를 잘라내지만 원래 모서리의 일부는 그대로 둡니다. Zip은 비트런케이션이라고도 합니다.
4 Conway oC.pngOrtho: o = jj Conway eC.pngExpand: e = aa
5 Conway gC.pngGyro: g gd = rgr sd = rsr Conway sC.pngSnub: s 카이랄 연산자입니다. 스너브(기하학)를 참조하십시오. 하트와 반대로, gd는 g와 같지 않습니다: 그것은 그것의 키랄 쌍입니다.
6 Conway mC.pngMeta: m = kj Conway bC.pngBevel: b = ta

작업의 확장[편집]

콘웨이의 원래 세트 이후에 생성된 작업입니다. 여기에 작업이 없다고 해서 작업이 존재하지 않거나 LSP 또는 LOPSP가 아니라는 것을 의미하지는 않습니다. 단순화하기 위해 이 목록에는 환원 불가능한 연산자만 포함되며 다른 연산자는 연산자를 함께 구성하여 생성할 수 있습니다.

엣지벡터 Matrix x xd dx dxd 적용
4 Conway cC.pngChamfer: c Conway duC.pngcd = du Conway dcC.pngdc = ud Conway uC.pngSubdivide: u 챔퍼는 l의 결합 형태입니다. 챔퍼(기하학)를 참조하십시오.
5 Conway pC.pngPropeller: p Conway dpC.pngdp = pd Conway pC.pngdpd = p 카이랄 연산자입니다. 프로펠러 조작기는 조지 하트에 의해 개발되었습니다.
5 Conway lC.pngLoft: l Conway ldC.pngld Conway dlC.pngdl Conway dldC.pngdld
6 Conway qC.pngQuinto: q Conway qdC.pngqd Conway dqC.pngdq Conway dqdC.pngdqd 조인 표기법에 대한 설명은 아래를 참조하십시오.
6 Conway L0C.pngJoin-lace: L0 Conway Diagram L0d.pngL0d Conway dL0C.pngdL0 Conway dL0d.pngdL0d 조인 표기법에 대한 설명은 아래를 참조하십시오.
7 Conway LC.pngLace: L Conway L0dC.pngLd Conway dLC.pngdL Conway dLdC.pngdLd
7 Conway KC.pngStake: K Conway KdC.pngKd Conway dKC.pngdK Conway dKdC.pngdKd
7 Conway wC.pngWhirl: w wd = dv Conway dwC.pngvd = dw Volute: v 카이랄 연산자입니다.
8 Conway (kk)0C.pngJoin-kis-kis: Conway (kk)0dC.png Conway d(kk)0C.png Conway d(kk)0dC.png 조인 표기법에 대한 설명은 아래를 참조하십시오. 비결합 형태인 kk는

환원 불가능한 것이 아니다.

10 Conway XC.pngCross: X Conway XdC.pngXd Conway dXC.pngdX Conway dXdC.pngdXd

인덱싱된 확장 작업[편집]


일부 기준에 따라 여러 연산자를 그룹화하거나 인덱스에 의해 동작이 수정될 수 있다. 이들n x라는 첨자로 연산자로 기록된다.

확대[편집]

증강 작업은 원래 가장자리를 유지한다. 그것들은 면의 어떤 독립적인 부분집합에 적용될 수도 있고, 원래의 가장자리를 제거하여 결합 형태로 변환될 수도 있다. 콘웨이 표기법은 이러한 연산자에 대한 선택적 지수를 지원한다. 즉, 결합 양식의 경우 0 또는 영향을 받는 면이 몇 개인지의 경우 3 이상이다. 예를 들어, kY44=O: 정사각형 기반 피라미드를 취하고 다른 피라미드를 정사각형 베이스에 붙이면 8각형이 된다.

연산자 k l L K (kk)
x Conway kC.png Conway lC.png Conway LC.png Conway KC.png Conway kkC.png
x0 Conway jC.pngk0 = j Conway cC.pngl0 = c Conway L0C.pngL0 Conway K0C.pngK0 = jk Conway (kk)0C.png
확대 피라미드 프리즘 향전신병

메타/비벨[편집]

메타는 가운데와 가장자리를 따라 정점을, 베벨은 가운데, 시드 정점, 가장자리를 따라 정점을 추가한다. 지수는 가장자리를 따라 정점 또는 면의 수를 더한 것이다. 메타(비인덱스 형태)는 캔트런지(cantitruncation) 또는 옴니트런지(hunitruncation)라고도 한다. 여기서 0은 확대 연산과 같은 것을 의미하지 않는다는 점에 유의하십시오. 즉, 가장자리를 따라 정점(또는 면)이 0으로 추가된다는 것을 의미한다.

메타/비벨 연산자
n 예지 계수 메트릭스 x xd dx dxd
0 3 Conway kC.pngk = m0 Conway kdC.pngn Conway dkC.pngz = b0 Conway tC.pngt
1 6 Conway mC.pngm = m1 = kj Conway bC.pngb = b1 = ta
2 9 Conway m3C.pngm2 Conway m3dC.pngm2d Conway b3C.pngb2 Conway dm3dC.pngb2d
3 12 Conway m4C.pngm3 m3d b3 b3d
n 3n+3 mn mnd bn bnd

메디알[편집]

중심에서 각 시드 정점에 가장자리를 추가하지 않는다는 점을 제외하면 메디알은 메타와 같다. 지수 1 형태는 콘웨이의 정형외과와 확장 연산자와 동일하다. 확장(expansion)은 확장과 확장(cantellation)이라고도 한다. oe는 아래에 설명된 자체 인덱싱된 양식을 가지고 있다는 점에 유의하십시오. 또한 일부 구현에서는 1이 아닌 0에서 인덱싱을 시작한다는 점에 유의하십시오

중간 연산자
n 가장자리요소 메트릭스 x xd dx dxd
1 4 Conway oC.pngM1 = o = jj Conway eC.pnge = aa
2 7 Conway MC.pngMedial: M = M2 Conway MdC.pngMd Conway dMC.pngdM Conway dMdC.pngdMd
n 3n+1 Mn Mnd dMn dMnd

골드버그콕시터[편집]

골드버그-콕세터(GC) 콘웨이 운영자는 골드버그-콕세터 건설의 연장선인 두 무한 연산자 계열이다. GC 구조는 삼각 격자의 삼각형 부분 또는 사각 격자의 사각형 부분을 취하여 다면체의 각 면 위에 놓는 것으로 생각할 수 있다. 이 구조는 삼각형이나 사각형의 챔버("마스터 폴리곤")를 식별하여 어떤 면으로도 확장할 수 있다. 삼각형 계열의 연산자는 Goldberg Polyedra와 Geodesic Polyedra를 생산하는 데 사용될 수 있다: 공식은 Geodesic Polyedra와 Goldberg Polyedra 목록을 참조한다.

두 가문은 삼각형 GC 계열, ca,b ua,b, 그리고 4각형 GC 계열, ea,b o이다a,b. 두 GC 패밀리는 두 개의 정수로 지수화된다. 그리고그들은 많은 훌륭한 자질들을 가지고 있다.

  • 그 가족의 지수는 복잡한 숫자에 걸쳐 특정한 유클리드 영역과 관계를 가진다: 삼각형 GC 계열의 아이젠슈타인 정수와 4각형 GC 계열의 가우스 정수.
  • 같은 가족 내 xxd기둥과 dxd기둥의 운영자들이 서로 통근한다.

운영자는 3가지 등급으로 구분된다(예는 c로 작성되지만 4개 운영자 모두에게 적용).

  • 클래스 I:. 아치랄, 원래 가장자리를 보존한다. 0 지수를 억제한 상태로 작성할 수 있다(a,0: c = ca).
  • 클래스 II:. 또한 아치랄. ca,a = cca1,1 분해할 수 있음
  • 클래스 III: 다른 모든 연산자. 이것들은 치랄이고, ca,b cb,a 서로 치랄 쌍이다.

원래 콘웨이 작전 중 GC 계열에 속하지 않는 것은 g와 s(자이로와 스너브)뿐이다. 메타(meta)와 베벨(m과 b)은 삼각형 계열의 연산자 1명과 사각형 계열의 연산자 1명으로 표현할 수 있다.

a b Class Edge factor

T = a2 + ab + b2

메트릭스 마스터

삼각형

x xd dx dxd
1 0 I 1 Subdivided triangle 01 00.svg Conway C.pngu1 = S Conway dC.pngd Conway C.pngc1 = S
2 0 I 4 Subdivided triangle 02 00.svg Conway uC.pngu2 = u Conway dcC.pngdc Conway duC.pngdu Conway cC.pngc2 = c
3 0 I 9 Subdivided triangle 03 00.svg Conway ktC.pngu3 = nn Conway dtkC.pngnk Conway dktC.pngzt Conway tkC.pngc3 = zz
4 0 I 16 Subdivided triangle 04 00.svg Conway u4C.pngu4 = uu uud = dcc duu = ccd c4 = cc
5 0 I 25 Subdivided triangle 05 00.svg Conway u5C.pngu5 u5d = dc5 du5 = c5d c5
6 0 I 36 Subdivided triangle 06 00.svg Conway u6C.pngu6 = unn unk czt u6 = czz
7 0 I 49 Subdivided triangle 07 00.svg Conway u7.pngu7 = u2,1u1,2 = vrv vrvd = dwrw dvrv = wrwd c7 = c2,1c1,2 = wrw
8 0 I 64 Subdivided triangle 08 00.svg Conway u8C.pngu8 = u3 u3d = dc3 du3 = c3d c8 = c3
9 0 I 81 Subdivided triangle 09 00.svg Conway u9C.pngu9 = n4 n3k = kz3 tn3 = z3t c9 = z4
1 1 II 3 Subdivided triangle 01 01.svg Conway kdC.pngu1,1 = n Conway kC.pngk Conway tC.pngt Conway dkC.pngc1,1 = z
2 1 III 7 Subdivided triangle 02 01.svg v = u2,1 Conway dwC.pngvd = dw dv = wd Conway wC.pngw = c2,1
3 1 III 13 Subdivided triangle 03 01.svg u3,1 u3,1d = dc3,1 du3,1 = c3,1d Conway w3C.pngc3,1
3 2 III 19 Subdivided triangle 03 02.svg u3,2 u3,2d = dc3,2 du3,2 = c3,2d Conway w3-2.pngc3,2
4 3 III 37 Subdivided triangle 04 03.svg u4,3 u4,3d = dc4,3 du4,3 = c4,3d Conway w4-3C.pngc4,3
5 4 III 61 Subdivided triangle 05 04.svg u5,4 u5,4d = dc5,4 du5,4 = c5,4d Conway w5-4C.pngc5,4
6 5 III 91 Subdivided triangle 06 05.svg u6,5 = u1,2u1,3 u6,5d = dc6,5 du6,5 = c6,5d Conway w6-5C.pngc6,5=c1,2c1,3
7 6 III 127 Subdivided triangle 07 06.svg u7,6 u7,6d = dc7,6 du7,6 = c7,6d Conway w7C.pngc7,6
8 7 III 169 Subdivided triangle 08 07.svg u8,7 = u3,12 u8,7d = dc8,7 du8,7 = c8,7d Conway w8C.pngc8,7 = c3,12
9 8 III 217 Subdivided triangle 09 08.svg u9,8 = u2,1u5,1 u9,8d = dc9,8 du9,8 = c9,8d Conway w9C.pngc9,8 = c2,1c5,1
I, II, or III ... ua,b ua,bd = dca,b dua,b = ca,bd ca,b
I or III ... ua,b ua,bd = dca,b dua,b = ca,bd ca,b

아르키메데스 다면체와 카탈루냐 다면체[편집]