위상 벡터 공간

위키백과, 우리 모두의 백과사전.
(위상벡터공간에서 넘어옴)
이동: 둘러보기, 검색

수학에서, 위상 벡터 공간(位相vector空間, 영어: topological vector space, 약자 TVS)은 호환되는 위상이 주어진 벡터 공간이다.

정의[편집]

위상환이라고 하자. 그렇다면 -위상 왼쪽 가군(영어: topological left -module) 는 다음 두 성질을 만족시키는, 위상 공간의 구조를 가지는 -왼쪽 가군이다.

  • (덧셈의 연속성) 벡터 덧셈 연속 함수다. (여기서 곱위상을 갖춘다.)
  • (스칼라곱의 연속성) 스칼라곱 연속 함수다. (여기서 곱위상을 갖춘다.)

마찬가지로 -위상 오른쪽 가군을 정의할 수 있다. 물론, 가환환이라면 왼쪽·오른쪽을 구별할 필요가 없다.

만약 위상체라면, -위상 벡터 공간이라고 한다. (월터 루딘과 같은 일부 저자들은 여기에 T1 공간 조건을 추가하기도 한다.)

성질[편집]

실수체나 복소수체에 대한 위상 벡터 공간 에 대하여, 다음 조건들이 서로 동치이다.

즉, 위상 벡터 공간에 대해서는 T1부터 T(= 티호노프 공간)까지의 성질들이 서로 동치가 된다.

참고 문헌[편집]

바깥 고리[편집]